{"title":"Observed air–sea turbulent heat flux anomalies during the onset of the South China Sea summer monsoon in 2021","authors":"Xiangzhou Song, Xinyue Wang, Wenbo Cai, Xuehan Xie","doi":"10.1175/mwr-d-22-0314.1","DOIUrl":null,"url":null,"abstract":"\nThis study presents observational findings of air–sea turbulent heat flux anomalies during the onset of the South China Sea summer monsoon (SCSSM) in 2021 and explains the mechanism for high-resolution heat flux variations. Turbulent heat flux discrepancies are not uniform throughout the basin but indicate a significant regional disparity in the South China Sea (SCS), which also experiences evident year-to-year variability. Based on buoy- and cruise-based air–sea measurements, high-temporal-resolution (less than hourly) anomalies in the latent heat flux during the SCSSM burst are unexpectedly determined by sea-air humidity differences instead of wind effects under near-neutral and mixed marine atmospheric boundary layer (MABL) stability conditions. However, latent heat anomalies are mainly induced by wind speed under changing MABL conditions. The sensible heat flux is much weaker, with its anomalies dominated by sea-air temperature differences regardless of the boundary layer condition. The observational results are used to examine the discrepancies in turbulent heat fluxes and associated air–sea variables in reanalysis products. The comparisons indicate that latent and sensible heat fluxes in the reanalysis are overestimated by approximately 55 Wm−2 and 3 Wm−2, respectively. These overestimations are mainly induced by higher estimates of sea-air humidity/temperature differences. The relative humidity is underestimated by approximately 4.2% in the two high-resolution reanalysis products. The higher SST (near-surface specific humidity) and lower air temperature (specific air humidity) eventually lead to higher estimates of sea-air humidity/temperature differences (1.75 g·kg−1/0.25 °C), which are the dominant factors controlling the variations in the air–sea turbulent heat fluxes.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-22-0314.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents observational findings of air–sea turbulent heat flux anomalies during the onset of the South China Sea summer monsoon (SCSSM) in 2021 and explains the mechanism for high-resolution heat flux variations. Turbulent heat flux discrepancies are not uniform throughout the basin but indicate a significant regional disparity in the South China Sea (SCS), which also experiences evident year-to-year variability. Based on buoy- and cruise-based air–sea measurements, high-temporal-resolution (less than hourly) anomalies in the latent heat flux during the SCSSM burst are unexpectedly determined by sea-air humidity differences instead of wind effects under near-neutral and mixed marine atmospheric boundary layer (MABL) stability conditions. However, latent heat anomalies are mainly induced by wind speed under changing MABL conditions. The sensible heat flux is much weaker, with its anomalies dominated by sea-air temperature differences regardless of the boundary layer condition. The observational results are used to examine the discrepancies in turbulent heat fluxes and associated air–sea variables in reanalysis products. The comparisons indicate that latent and sensible heat fluxes in the reanalysis are overestimated by approximately 55 Wm−2 and 3 Wm−2, respectively. These overestimations are mainly induced by higher estimates of sea-air humidity/temperature differences. The relative humidity is underestimated by approximately 4.2% in the two high-resolution reanalysis products. The higher SST (near-surface specific humidity) and lower air temperature (specific air humidity) eventually lead to higher estimates of sea-air humidity/temperature differences (1.75 g·kg−1/0.25 °C), which are the dominant factors controlling the variations in the air–sea turbulent heat fluxes.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.