{"title":"Malliavin calculus used to derive a stochastic maximum principle for system driven by fractional Brownian and standard Wiener motions with application","authors":"Tayeb Bouaziz, A. Chala","doi":"10.1515/rose-2020-2047","DOIUrl":null,"url":null,"abstract":"Abstract We consider a stochastic control problem in the case where the set of the control domain is convex, and the system is governed by fractional Brownian motion with Hurst parameter H ∈ ( 1 2 , 1 ) {H\\in(\\frac{1}{2},1)} and standard Wiener motion. The criterion to be minimized is in the general form, with initial cost. We derive a stochastic maximum principle of optimality by using two famous approaches. The first one is the Doss–Sussmann transformation and the second one is the Malliavin derivative.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"28 1","pages":"291 - 306"},"PeriodicalIF":0.3000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2020-2047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2020-2047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We consider a stochastic control problem in the case where the set of the control domain is convex, and the system is governed by fractional Brownian motion with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} and standard Wiener motion. The criterion to be minimized is in the general form, with initial cost. We derive a stochastic maximum principle of optimality by using two famous approaches. The first one is the Doss–Sussmann transformation and the second one is the Malliavin derivative.