VLSI Placement Optimization Algorithms

Q4 Engineering
Jucemar Monteiro
{"title":"VLSI Placement Optimization Algorithms","authors":"Jucemar Monteiro","doi":"10.29292/jics.v17i3.645","DOIUrl":null,"url":null,"abstract":"Placement is a fundamental optimization step to compute cell locations. The quality of results in Clock Tree Synthesis (CTS) and routing stages is impacted by the placement solution. The placement optimization flow is split into (1)global placement, (2) legalization, and (3) detailed placement. In global placement, cell locations are computed to minimize total wire length subject to a maximum cell density threshold. The cell overlapping and cell alignment to site row boundaries are relaxed. In legalization, cells are placed in locations free of overlapping and aligned to site row boundaries. Legalization algorithms compute cell locations with minimized cell displacement. In detailed placement, objectives are optimized locally. Detailed placement algorithms iterate over one cell or a small set of cells. The traditional optimization objective is total wire length. Placement algorithms also address timing violations, routability, design rules, and so forth. The placement algorithms rely on heuristics and formal methods to compute optimized cell locations. Moreover, placement algorithms require models to address signal delay propagation, area density, routing congestion, hyper-edge nets, and so forth. In the literature, several algorithms have been presented to improve placement solutions. On the other hand, placement is a really challenging problem that continues to have space for further improvement and for innovative algorithms.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i3.645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Placement is a fundamental optimization step to compute cell locations. The quality of results in Clock Tree Synthesis (CTS) and routing stages is impacted by the placement solution. The placement optimization flow is split into (1)global placement, (2) legalization, and (3) detailed placement. In global placement, cell locations are computed to minimize total wire length subject to a maximum cell density threshold. The cell overlapping and cell alignment to site row boundaries are relaxed. In legalization, cells are placed in locations free of overlapping and aligned to site row boundaries. Legalization algorithms compute cell locations with minimized cell displacement. In detailed placement, objectives are optimized locally. Detailed placement algorithms iterate over one cell or a small set of cells. The traditional optimization objective is total wire length. Placement algorithms also address timing violations, routability, design rules, and so forth. The placement algorithms rely on heuristics and formal methods to compute optimized cell locations. Moreover, placement algorithms require models to address signal delay propagation, area density, routing congestion, hyper-edge nets, and so forth. In the literature, several algorithms have been presented to improve placement solutions. On the other hand, placement is a really challenging problem that continues to have space for further improvement and for innovative algorithms.
超大规模集成电路放置优化算法
放置是计算单元位置的基本优化步骤。时钟树合成(CTS)和路由阶段的结果质量受到放置解决方案的影响。布局优化流程分为(1)全局布局、(2)合法化布局和(3)详细布局。在全局布局中,计算单元位置以最小化受最大单元密度阈值约束的总导线长度。单元格重叠和单元格与站点行边界的对齐被放松。在合法化中,单元格被放置在没有重叠的位置,并与站点行边界对齐。合法化算法以最小的单元位移计算单元位置。在详细布局中,目标是局部优化的。详细的放置算法迭代一个单元或一小组单元。传统的优化目标是总钢丝长度。放置算法还解决了时间冲突、可路由性、设计规则等问题。放置算法依赖于启发式和形式化方法来计算优化的单元位置。此外,布局算法需要模型来解决信号延迟传播、区域密度、路由拥塞、超边缘网络等问题。在文献中,已经提出了几种算法来改进放置解决方案。另一方面,定位是一个非常具有挑战性的问题,它仍然有进一步改进和创新算法的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信