Impregnating Noble Metals into the Polymer Matrix of Super Cross-Linked Polystyrene

IF 0.7 Q4 ENGINEERING, CHEMICAL
A. V. Bykov, L. Zh. Nikoshvili, G. N. Demidenko, M. G. Sul’man, L. Kiwi-Minsker
{"title":"Impregnating Noble Metals into the Polymer Matrix of Super Cross-Linked Polystyrene","authors":"A. V. Bykov,&nbsp;L. Zh. Nikoshvili,&nbsp;G. N. Demidenko,&nbsp;M. G. Sul’man,&nbsp;L. Kiwi-Minsker","doi":"10.1134/S2070050422020027","DOIUrl":null,"url":null,"abstract":"<p>Commercial super cross-linked polystyrene (SPS) is a promising support for creating heterogeneous catalysts designed for processes of fine organic synthesis. Results from years of studying the creation of heterogeneous Pd-, Pt-, and Ru-containing catalysts based on SPS of grades MN100 and MN270. Data are presented from characterizing SPS and catalysts based on them using a complex of physical and physicochemical means of analysis. It is shown that commercial SPS can be used to synthesize catalysts in the form of spherical grains or preliminarily ground powders. Along with the nature of a metal catalyst precursor, the form of an SPS has a strong effect on the distribution of Pd, Pt, and Ru compounds and the size of metal-containing nanoparticles formed in the polymer’s medium. The catalysts in a hydrogen flow at a temperature of 300°C on the surface chemical composition of powder MN100 samples impregnated w Pd, Pt, and Ru compounds is considered for the first time.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Commercial super cross-linked polystyrene (SPS) is a promising support for creating heterogeneous catalysts designed for processes of fine organic synthesis. Results from years of studying the creation of heterogeneous Pd-, Pt-, and Ru-containing catalysts based on SPS of grades MN100 and MN270. Data are presented from characterizing SPS and catalysts based on them using a complex of physical and physicochemical means of analysis. It is shown that commercial SPS can be used to synthesize catalysts in the form of spherical grains or preliminarily ground powders. Along with the nature of a metal catalyst precursor, the form of an SPS has a strong effect on the distribution of Pd, Pt, and Ru compounds and the size of metal-containing nanoparticles formed in the polymer’s medium. The catalysts in a hydrogen flow at a temperature of 300°C on the surface chemical composition of powder MN100 samples impregnated w Pd, Pt, and Ru compounds is considered for the first time.

Abstract Image

贵金属在超交联聚苯乙烯聚合物基体中的浸渍
商用超交联聚苯乙烯(SPS)是制备用于精细有机合成过程的多相催化剂的良好载体。基于MN100和MN270级SPS的非均相含Pd、Pt和ru催化剂的研究成果。数据来自表征SPS和催化剂基于他们使用复杂的物理和物理化学的分析手段。结果表明,商品SPS可用于合成球形颗粒或初步研磨粉末形式的催化剂。随着金属催化剂前驱体的性质,SPS的形式对Pd、Pt和Ru化合物的分布以及在聚合物介质中形成的含金属纳米颗粒的大小有很强的影响。首次考虑了催化剂在300℃氢流条件下对粉末MN100样品表面浸渍w Pd、Pt和Ru化合物的化学组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis in Industry
Catalysis in Industry ENGINEERING, CHEMICAL-
CiteScore
1.30
自引率
14.30%
发文量
21
期刊介绍: The journal covers the following topical areas: Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信