Unravel the spatio-temporal patterns and their nonlinear relationship with correlates of dockless shared bikes near metro stations

Zhao Tong, Yi Zhu, Ziyi Zhang, Rui An, Yaolin Liu, Meng Zheng
{"title":"Unravel the spatio-temporal patterns and their nonlinear relationship with correlates of dockless shared bikes near metro stations","authors":"Zhao Tong, Yi Zhu, Ziyi Zhang, Rui An, Yaolin Liu, Meng Zheng","doi":"10.1080/10095020.2022.2137857","DOIUrl":null,"url":null,"abstract":"ABSTRACT The dockless bike-sharing system has rapidly expanded worldwide and has been widely used as an intermodal transport to connect with public transportation. However, higher flexibility may cause an imbalance between supply and demand during daily operation, especially around the metro stations. A stable and efficient rebalancing model requires spatio-temporal usage patterns as fundamental inputs. Therefore, understanding the spatio-temporal patterns and correlates is important for optimizing and rescheduling bike-sharing systems. This study proposed a dynamic time warping distance-based two-dimensional clustering method to quantify spatio-temporal patterns of dockless shared bikes in Wuhan and further applied the multiclass explainable boosting machine to explore the main related factors of these patterns. The results found six patterns on weekdays and four patterns on weekends. Three patterns show the imbalance of arrival and departure flow in the morning and evening peak hours, while these phenomena become less intensive on weekends. Road density, living service facility density and residential density are the top influencing factors on both weekdays and weekends, which means that the comprehensive impact of built-up environment attraction, facility suitability and riding demand leads to the different usage patterns. The nonlinear influence universally exists, and the probability of a certain pattern varies in different value ranges of variables. When the densities of living facilities and roads are moderate and the relationship between job and housing is relatively balanced, it can effectively promote the balanced usage of dockless shared bikes while maintaining high riding flow. The spatio-temporal patterns can identify the associated problems such as imbalance or lack of users, which could be mitigated by corresponding solutions. The relative importance and nonlinear effects help planners prioritize strategies and identify effective ranges on different patterns to promote the usage and efficiency of the bike-sharing system.","PeriodicalId":58518,"journal":{"name":"武测译文","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"武测译文","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1080/10095020.2022.2137857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT The dockless bike-sharing system has rapidly expanded worldwide and has been widely used as an intermodal transport to connect with public transportation. However, higher flexibility may cause an imbalance between supply and demand during daily operation, especially around the metro stations. A stable and efficient rebalancing model requires spatio-temporal usage patterns as fundamental inputs. Therefore, understanding the spatio-temporal patterns and correlates is important for optimizing and rescheduling bike-sharing systems. This study proposed a dynamic time warping distance-based two-dimensional clustering method to quantify spatio-temporal patterns of dockless shared bikes in Wuhan and further applied the multiclass explainable boosting machine to explore the main related factors of these patterns. The results found six patterns on weekdays and four patterns on weekends. Three patterns show the imbalance of arrival and departure flow in the morning and evening peak hours, while these phenomena become less intensive on weekends. Road density, living service facility density and residential density are the top influencing factors on both weekdays and weekends, which means that the comprehensive impact of built-up environment attraction, facility suitability and riding demand leads to the different usage patterns. The nonlinear influence universally exists, and the probability of a certain pattern varies in different value ranges of variables. When the densities of living facilities and roads are moderate and the relationship between job and housing is relatively balanced, it can effectively promote the balanced usage of dockless shared bikes while maintaining high riding flow. The spatio-temporal patterns can identify the associated problems such as imbalance or lack of users, which could be mitigated by corresponding solutions. The relative importance and nonlinear effects help planners prioritize strategies and identify effective ranges on different patterns to promote the usage and efficiency of the bike-sharing system.
揭示地铁站附近无桩共享单车的时空格局及其非线性关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信