T-Dagum: A Way of Generalizing Dagum Distribution Using Lomax Quantile Function

IF 1 Q3 STATISTICS & PROBABILITY
M. Ekum, M. Adamu, E. Akarawak
{"title":"T-Dagum: A Way of Generalizing Dagum Distribution Using Lomax Quantile Function","authors":"M. Ekum, M. Adamu, E. Akarawak","doi":"10.1155/2020/1641207","DOIUrl":null,"url":null,"abstract":"Recently, different distributions have been generalized using the - R { Y } framework but the possibility of using Dagum distribution has not been assessed. The - R { Y } combines three distributions, with one as a baseline distribution, with the strength of each distribution combined to produce greater effect on the new generated distribution. The new generated distributions would have more parameters but would have high flexibility in handling bimodality in datasets and it is a weighted hazard function of the baseline distribution. This paper therefore generalized the Dagum distribution using the quantile function of Lomax distribution. A member of - Dagum class of distribution called exponentiated-exponential-Dagum {Lomax} (EEDL) distribution was proposed. The distribution will be useful in survival analysis and reliability studies. Different characterizations of the distribution are derived, such as the asymptotes, stochastic ordering, stress-strength analysis, moment, Shannon entropy, and quantile function. Simulated and real data are used and compared favourably with existing distributions in the literature.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":"2020 1","pages":"1-17"},"PeriodicalIF":1.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/1641207","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/1641207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

Abstract

Recently, different distributions have been generalized using the - R { Y } framework but the possibility of using Dagum distribution has not been assessed. The - R { Y } combines three distributions, with one as a baseline distribution, with the strength of each distribution combined to produce greater effect on the new generated distribution. The new generated distributions would have more parameters but would have high flexibility in handling bimodality in datasets and it is a weighted hazard function of the baseline distribution. This paper therefore generalized the Dagum distribution using the quantile function of Lomax distribution. A member of - Dagum class of distribution called exponentiated-exponential-Dagum {Lomax} (EEDL) distribution was proposed. The distribution will be useful in survival analysis and reliability studies. Different characterizations of the distribution are derived, such as the asymptotes, stochastic ordering, stress-strength analysis, moment, Shannon entropy, and quantile function. Simulated and real data are used and compared favourably with existing distributions in the literature.
T-Dagum:利用Lomax分位数函数推广Dagum分布的一种方法
最近,使用-R{Y}框架对不同的分布进行了推广,但尚未评估使用Dagum分布的可能性。-R{Y}组合了三个分布,其中一个作为基线分布,每个分布的强度组合在一起,对新生成的分布产生更大的影响。新生成的分布将具有更多的参数,但在处理数据集中的双峰性方面具有很高的灵活性,并且它是基线分布的加权危险函数。因此,本文利用Lomax分布的分位数函数推广了Dagum分布。提出了-Dagum类分布的一个成员,称为指数Dagum{Lomax}(EEDL)分布。分布将有助于生存分析和可靠性研究。导出了分布的不同特征,如渐近线、随机排序、应力强度分析、矩、香农熵和分位数函数。使用了模拟数据和真实数据,并与文献中现有的分布进行了有利的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信