A Demographic Sampling Model and Database for Addressing Racial, Ethnic, and Gender Bias in Popular-music Empirical Research

IF 0.6 0 MUSIC
Nicholas J. Shea
{"title":"A Demographic Sampling Model and Database for Addressing Racial, Ethnic, and Gender Bias in Popular-music Empirical Research","authors":"Nicholas J. Shea","doi":"10.18061/emr.v17i1.8531","DOIUrl":null,"url":null,"abstract":"This report summarizes the development and application of a demographic encoding model designed to assist researchers in aligning dataset diversity with real-world diversity in popular-music corpus studies. Drawing on sampling strategies in machine-learning research and encoding procedures in health sciences and the humanities, the model and its associated open-access data provides researchers with a tool to generate more inclusive databases along the parameters of race, ethnicity, and gender. The model itself attempts to reconcile the intersectional boundaries of personal identity with the binarity required by statistical encoding and analysis. Importantly, it facilitates a mindful approach through conditional parameters; for example, by minimizing the risk of tokenizing minoritized artists in multi-member ensembles by considering said artist’s agency and demographic proportion within the group. Applying the model to artist samples from various popular-music corpora affirms the underrepresentation of non-white and non-male artists in related research. In response, the report outlines how a researcher might utilize intentional demographic sampling when developing future corpus-based popular-music studies.","PeriodicalId":44128,"journal":{"name":"Empirical Musicology Review","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Musicology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18061/emr.v17i1.8531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 0

Abstract

This report summarizes the development and application of a demographic encoding model designed to assist researchers in aligning dataset diversity with real-world diversity in popular-music corpus studies. Drawing on sampling strategies in machine-learning research and encoding procedures in health sciences and the humanities, the model and its associated open-access data provides researchers with a tool to generate more inclusive databases along the parameters of race, ethnicity, and gender. The model itself attempts to reconcile the intersectional boundaries of personal identity with the binarity required by statistical encoding and analysis. Importantly, it facilitates a mindful approach through conditional parameters; for example, by minimizing the risk of tokenizing minoritized artists in multi-member ensembles by considering said artist’s agency and demographic proportion within the group. Applying the model to artist samples from various popular-music corpora affirms the underrepresentation of non-white and non-male artists in related research. In response, the report outlines how a researcher might utilize intentional demographic sampling when developing future corpus-based popular-music studies.
用于解决流行音乐实证研究中种族、民族和性别偏见的人口抽样模型和数据库
本报告总结了人口统计编码模型的开发和应用,该模型旨在帮助研究人员在流行音乐语料库研究中将数据集的多样性与现实世界的多样性相一致。该模型及其相关的开放获取数据借鉴了机器学习研究中的采样策略以及健康科学和人文学科中的编码程序,为研究人员提供了一种工具,可以根据种族、族裔和性别参数生成更具包容性的数据库。该模型本身试图调和个人身份的交叉边界与统计编码和分析所需的二元性。重要的是,它通过条件参数促进了谨慎的方法;例如,通过考虑多成员组合中的少数族裔艺术家的代理和群体中的人口比例来最小化将其标记化的风险。将该模型应用于来自各种流行音乐语料库的艺术家样本,肯定了非白人和非男性艺术家在相关研究中的代表性不足。作为回应,该报告概述了研究人员在开发未来基于语料库的流行音乐研究时如何利用有意的人口统计抽样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信