On strong exceptional collections of line bundles of maximal length on fano toric Deligne–Mumford stacks

IF 0.5 4区 数学 Q3 MATHEMATICS
L. Borisov, Chengxi Wang
{"title":"On strong exceptional collections of line bundles of maximal length on fano toric Deligne–Mumford stacks","authors":"L. Borisov, Chengxi Wang","doi":"10.4310/ajm.2021.v25.n4.a3","DOIUrl":null,"url":null,"abstract":"We study strong exceptional collections of line bundles on Fano toric Deligne-Mumford stacks $\\mathbb{P}_{\\mathbf{\\Sigma}}$ with rank of Picard group at most two. We prove that any strong exceptional collection of line bundles generates the derived category of $\\mathbb{P}_{\\mathbf{\\Sigma}}$, as long as the number of elements in the collection equals the rank of the (Grothendieck) $K$-theory group of $\\mathbb{P}_{\\mathbf{\\Sigma}}$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n4.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study strong exceptional collections of line bundles on Fano toric Deligne-Mumford stacks $\mathbb{P}_{\mathbf{\Sigma}}$ with rank of Picard group at most two. We prove that any strong exceptional collection of line bundles generates the derived category of $\mathbb{P}_{\mathbf{\Sigma}}$, as long as the number of elements in the collection equals the rank of the (Grothendieck) $K$-theory group of $\mathbb{P}_{\mathbf{\Sigma}}$.
关于环面Deligne-Mumford堆上最大长度线束的强例外集合
我们研究Fano-toric Deligne Mumford堆栈$\mathbb上的强异常线束集合{P}_{\mathbf{\ Sigma}}$,Picard群的秩至多为2。我们证明了任何强异常的线束集合都会生成$\mathbb的派生范畴{P}_{\mathbf{\ Sigma}}$,只要集合中元素的数量等于$\mathbb的(Grothendieck)$K$理论组的秩{P}_{\mathbf{\ Sigma}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信