{"title":"McKay trees","authors":"Avraham Aizenbud, I. Entova-Aizenbud","doi":"10.5802/alco.270","DOIUrl":null,"url":null,"abstract":"Given a finite group $G$ and its representation $\\rho$, the corresponding McKay graph is a graph $\\Gamma(G,\\rho)$ whose vertices are the irreducible representations of $G$; the number of edges between two vertices $\\pi,\\tau$ of $\\Gamma(G,\\rho)$ is $dim Hom_G(\\pi \\otimes \\rho, \\tau) $. The collection of all McKay graphs for a given group $G$ encodes, in a sense, its character table. Such graphs were also used by McKay to provide a bijection between the finite subgroups of $SU(2)$ and the affine Dynkin diagrams of types $A, D, E$, the bijection given by considering the appropriate McKay graphs. In this paper, we classify all (undirected) trees which are McKay graphs of finite groups and describe the corresponding pairs $(G,\\rho)$; this classification turns out to be very concise. Moreover, we give a partial classification of McKay graphs which are forests, and construct some non-trivial examples of such forests.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Given a finite group $G$ and its representation $\rho$, the corresponding McKay graph is a graph $\Gamma(G,\rho)$ whose vertices are the irreducible representations of $G$; the number of edges between two vertices $\pi,\tau$ of $\Gamma(G,\rho)$ is $dim Hom_G(\pi \otimes \rho, \tau) $. The collection of all McKay graphs for a given group $G$ encodes, in a sense, its character table. Such graphs were also used by McKay to provide a bijection between the finite subgroups of $SU(2)$ and the affine Dynkin diagrams of types $A, D, E$, the bijection given by considering the appropriate McKay graphs. In this paper, we classify all (undirected) trees which are McKay graphs of finite groups and describe the corresponding pairs $(G,\rho)$; this classification turns out to be very concise. Moreover, we give a partial classification of McKay graphs which are forests, and construct some non-trivial examples of such forests.