{"title":"Comparative analysis and optimization of thermodynamic behavior of combined gas-steam power plant using grey-taguchi and artificial neural network","authors":"K. Madan, O. Singh","doi":"10.18186/thermal.1242832","DOIUrl":null,"url":null,"abstract":"In the published studies, to the best of the authors’ understanding, the grey Taguchi-based statistical technique has not been applied for the optimization of combined gas-steam power plants. In view of this, seven essential input parameters namely compressor inlet air temperature, pressure ratio, fuel temperature, volumetric flow rate of fuel, gas turbine maximum temperature, compressor efficiency, and turbine efficiency are chosen with the aim of determining the optimal combination of design variables that maximize the net power generation, thermal efficiency, exergetic effciency, and minimize the specific fuel consumption. Also, the impact weight of each parameter on output indicators has been evaluated. While the Taguchi approach helps to create an orthogonal array of L27 (3^7), the ANOVA method determines the contribution of each input argument on the objective function. Unlike the Taguchi and ANOVA optimization methodology, the grey relational analysis is performed to transform the multi-objective function into a single objective by way of estimating its grey relational grade. The most favorable combination of input parameters is determined as A1B1C1D1E3F3G3 and under this state, the optimum values of power generation, thermal efficiency, exergetic efficiency, and specific fuel consumption are found to be 259911 kW, 64.9 %, 66.27 %, and 0.1839 kg/kWh respectively. Moreover, the contribution ratio on the output characteristic of the combined cycle is found to be maximum for turbine efficiency (42.41 %) and minimum for fuel temperature (0.59 %). The effectiveness of the grey-Taguchi method is acknowledged and validated using an artificial neural network technique in MATLAB.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1242832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In the published studies, to the best of the authors’ understanding, the grey Taguchi-based statistical technique has not been applied for the optimization of combined gas-steam power plants. In view of this, seven essential input parameters namely compressor inlet air temperature, pressure ratio, fuel temperature, volumetric flow rate of fuel, gas turbine maximum temperature, compressor efficiency, and turbine efficiency are chosen with the aim of determining the optimal combination of design variables that maximize the net power generation, thermal efficiency, exergetic effciency, and minimize the specific fuel consumption. Also, the impact weight of each parameter on output indicators has been evaluated. While the Taguchi approach helps to create an orthogonal array of L27 (3^7), the ANOVA method determines the contribution of each input argument on the objective function. Unlike the Taguchi and ANOVA optimization methodology, the grey relational analysis is performed to transform the multi-objective function into a single objective by way of estimating its grey relational grade. The most favorable combination of input parameters is determined as A1B1C1D1E3F3G3 and under this state, the optimum values of power generation, thermal efficiency, exergetic efficiency, and specific fuel consumption are found to be 259911 kW, 64.9 %, 66.27 %, and 0.1839 kg/kWh respectively. Moreover, the contribution ratio on the output characteristic of the combined cycle is found to be maximum for turbine efficiency (42.41 %) and minimum for fuel temperature (0.59 %). The effectiveness of the grey-Taguchi method is acknowledged and validated using an artificial neural network technique in MATLAB.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.