Anomalous Relaxation and Three-Level System: A Fractional Schrödinger Equation Approach

Q2 Physics and Astronomy
E. Lenzi, E. C. Gabrick, E. Sayari, A. S. M. de Castro, J. Trobia, Antonio M. Batista
{"title":"Anomalous Relaxation and Three-Level System: A Fractional Schrödinger Equation Approach","authors":"E. Lenzi, E. C. Gabrick, E. Sayari, A. S. M. de Castro, J. Trobia, Antonio M. Batista","doi":"10.3390/quantum5020029","DOIUrl":null,"url":null,"abstract":"We investigate a three-level system in the context of the fractional Schrödinger equation by considering fractional differential operators in time and space, which promote anomalous relaxations and spreading of the wave packet. We first consider the three-level system omitting the kinetic term, i.e., taking into account only the transition among the levels, to analyze the effect of the fractional time derivative. Afterward, we incorporate a kinetic term and the fractional derivative in space to analyze simultaneous wave packet transition and spreading among the levels. For these cases, we obtain analytical and numerical solutions. Our results show a wide variety of behaviors connected to the fractional operators, such as the non-conservation of probability and the anomalous spread of the wave packet.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum5020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate a three-level system in the context of the fractional Schrödinger equation by considering fractional differential operators in time and space, which promote anomalous relaxations and spreading of the wave packet. We first consider the three-level system omitting the kinetic term, i.e., taking into account only the transition among the levels, to analyze the effect of the fractional time derivative. Afterward, we incorporate a kinetic term and the fractional derivative in space to analyze simultaneous wave packet transition and spreading among the levels. For these cases, we obtain analytical and numerical solutions. Our results show a wide variety of behaviors connected to the fractional operators, such as the non-conservation of probability and the anomalous spread of the wave packet.
反常松弛与三能级系统:分数阶薛定谔方程方法
我们在分数阶薛定谔方程的背景下,通过考虑时间和空间上的分数阶微分算子,研究了一个三能级系统,这些算子促进了波包的异常弛豫和扩展。我们首先考虑省略动力学项的三能级系统,即只考虑能级之间的跃迁,以分析分数时间导数的影响。然后,我们结合动力学项和空间中的分数导数来分析同时发生的波包跃迁和在能级之间的传播。对于这些情况,我们得到了解析解和数值解。我们的结果显示了与分数算子有关的各种行为,例如概率的不守恒和波包的异常扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Reports
Quantum Reports Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
3.30
自引率
0.00%
发文量
33
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信