Properties and mechanism of ionic liquid/silicone oil based magnetorheological fluids

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Tong, P. Zhao, Xiaoguang Li, N. Ma, Xufeng Dong, Chenguang Niu, Zhanjun Wu, M. Qi
{"title":"Properties and mechanism of ionic liquid/silicone oil based magnetorheological fluids","authors":"Yu Tong, P. Zhao, Xiaoguang Li, N. Ma, Xufeng Dong, Chenguang Niu, Zhanjun Wu, M. Qi","doi":"10.1080/19475411.2022.2069876","DOIUrl":null,"url":null,"abstract":"ABSTRACT A magnetorheological fluid (MRF) is a smart composite suspension composed of nonmagnetic liquid and soft magnetic particles. Carrier fluids can considerably influence the performance of MRFs; therefore, to investigate the effect of carrier fluids on MRFs, an SO/IL-MRF was prepared by mixing an ionic liquid (IL) with silicone oil (SO) in this study. Three types of MRF samples were prepared for experiments (pure SO, pure IL, and SO/IL). According to the experimental results, the SO/IL-MRF has better sedimentation stability than those based on pure SO and pure IL. Further, three methods were used to determine the shear yield stresses of the MRFs. The SO/IL-MRF achieved a higher shear yield stress than those of the other two because a network structure is formed between the ionic fragments and the molecular chains of the SO in the SO/IL-MRF. This increases the movement resistance of the particles in the carrier fluid, and it is unlike the mechanism of the IL-enhanced MRF. This work provides new ideas for improving the MRF performance. Graphical abstractSO/IL-MRF prepared by mixing ionic liquid with silicone oil exhibited better sedimentation stability and higher shear yield stress. This is because a network structure is formed between the ionic fragments and the molecular chains of the silicone oil, which increases the movement resistance of the particles in the carrier fluid","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"13 1","pages":"263 - 272"},"PeriodicalIF":4.5000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2022.2069876","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT A magnetorheological fluid (MRF) is a smart composite suspension composed of nonmagnetic liquid and soft magnetic particles. Carrier fluids can considerably influence the performance of MRFs; therefore, to investigate the effect of carrier fluids on MRFs, an SO/IL-MRF was prepared by mixing an ionic liquid (IL) with silicone oil (SO) in this study. Three types of MRF samples were prepared for experiments (pure SO, pure IL, and SO/IL). According to the experimental results, the SO/IL-MRF has better sedimentation stability than those based on pure SO and pure IL. Further, three methods were used to determine the shear yield stresses of the MRFs. The SO/IL-MRF achieved a higher shear yield stress than those of the other two because a network structure is formed between the ionic fragments and the molecular chains of the SO in the SO/IL-MRF. This increases the movement resistance of the particles in the carrier fluid, and it is unlike the mechanism of the IL-enhanced MRF. This work provides new ideas for improving the MRF performance. Graphical abstractSO/IL-MRF prepared by mixing ionic liquid with silicone oil exhibited better sedimentation stability and higher shear yield stress. This is because a network structure is formed between the ionic fragments and the molecular chains of the silicone oil, which increases the movement resistance of the particles in the carrier fluid
离子液体/硅油基磁流变液的性能及机理
磁流变液是一种由非磁性液体和软磁性颗粒组成的智能复合悬浮液。载液可显著影响磁流变液的性能;因此,为了研究载液对MRF的影响,本研究通过将离子液体(IL)与硅油(SO)混合制备了SO/IL-MRF。制备了三种类型的MRF样品用于实验(纯SO、纯IL和SO/IL)。根据实验结果,SO/IL-MRF比纯SO和纯IL具有更好的沉降稳定性。此外,还使用了三种方法来确定MRF的剪切屈服应力。SO/IL-MRF实现了比其他两种更高的剪切屈服应力,因为在SO/IL-MR中SO的离子片段和分子链之间形成了网络结构。这增加了载体流体中颗粒的运动阻力,并且与IL增强的MRF的机制不同。这项工作为提高MRF性能提供了新的思路。将离子液体与硅油混合制备的SO/IL-MRF具有较好的沉淀稳定性和较高的剪切屈服应力。这是因为在硅油的离子片段和分子链之间形成了网络结构,这增加了颗粒在载液中的运动阻力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Smart and Nano Materials
International Journal of Smart and Nano Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.30
自引率
5.10%
发文量
39
审稿时长
11 weeks
期刊介绍: The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信