Domain variations of the first eigenvalue via a strict Faber-Krahn type inequality

IF 1.5 3区 数学 Q1 MATHEMATICS
T. Anoop, K. Kumar
{"title":"Domain variations of the first eigenvalue via a strict Faber-Krahn type inequality","authors":"T. Anoop, K. Kumar","doi":"10.57262/ade028-0708-537","DOIUrl":null,"url":null,"abstract":"For $d\\geq 2$ and $\\frac{2d+2}{d+2}<p<\\infty $, we prove a strict Faber-Krahn type inequality for the first eigenvalue $\\lambda _1(\\Omega )$ of the $p$-Laplace operator on a bounded Lipschitz domain $\\Omega \\subset \\mathbb{R}^d$ (with mixed boundary conditions) under the polarizations. We apply this inequality to the obstacle problems on the domains of the form $\\Omega \\setminus \\mathscr{O}$, where $\\mathscr{O}\\subset \\subset \\Omega $ is an obstacle. Under some geometric assumptions on $\\Omega $ and $\\mathscr{O}$, we prove the strict monotonicity of $\\lambda _1 (\\Omega \\setminus \\mathscr{O})$ with respect to certain translations and rotations of $\\mathscr{O}$ in $\\Omega $.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade028-0708-537","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

For $d\geq 2$ and $\frac{2d+2}{d+2}
通过严格Faber-Krahn型不等式的第一特征值的定义域变分
对于$d\geq2$和$\frac{2d+2}{d+2}<p<\infty$,我们证明了极化条件下有界Lipschitz域$\Omega\subet\mathbb{R}^d$上$p$-Laplace算子的第一特征值$\lambda_1(\Omega)$的严格Faber-Krahn型不等式。我们将这个不等式应用于形式为$\Omega\setminus\mathscr{O}$的域上的障碍问题,其中$\mathscr{O}\subet\subet\Omega$是一个障碍。在$\Omega$和$\mathscr{O}$上的一些几何假设下,我们证明了$\lambda_1(\Omega\setminus\mathscr{O})$关于$\mathscr{O}$在$\Omega$中的某些平移和旋转的严格单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信