Twisting lemma for $\lambda$-adic modules

IF 0.5 4区 数学 Q3 MATHEMATICS
S. Ghosh, Somnath Jha, Sudhanshu Shekhar
{"title":"Twisting lemma for $\\lambda$-adic modules","authors":"S. Ghosh, Somnath Jha, Sudhanshu Shekhar","doi":"10.4310/ajm.2021.v25.n4.a5","DOIUrl":null,"url":null,"abstract":"A classical twisting lemma says that given a finitely generated torsion module $M$ over the Iwasawa algebra $\\mathbb{Z}_p[[\\Gamma ]]$ with $\\Gamma \\cong \\mathbb{Z}_p, \\ \\exists$ a continuous character $\\theta: \\Gamma \\rightarrow \\mathbb{Z}_p^\\times$ such that, the $ \\Gamma^{n}$-Euler characteristic of the twist $M(\\theta)$ is finite for every $n$. This twisting lemma has been generalized for the Iwasawa algebra of a general compact $p$-adic Lie group $G$. In this article, we consider a further generalization of the twisting lemma to $\\mathcal{T}[[G]]$ modules, where $G$ is a compact $p$-adic Lie group and $\\mathcal{T}$ is a finite extension of $\\mathbb{Z}_p[[X]]$. Such modules naturally occur in Hida theory. We also indicate arithmetic application by considering the twisted Euler Characteristic of the big Selmer (respectively fine Selmer) group of a $\\Lambda$-adic form over a $p$-adic Lie extension.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n4.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A classical twisting lemma says that given a finitely generated torsion module $M$ over the Iwasawa algebra $\mathbb{Z}_p[[\Gamma ]]$ with $\Gamma \cong \mathbb{Z}_p, \ \exists$ a continuous character $\theta: \Gamma \rightarrow \mathbb{Z}_p^\times$ such that, the $ \Gamma^{n}$-Euler characteristic of the twist $M(\theta)$ is finite for every $n$. This twisting lemma has been generalized for the Iwasawa algebra of a general compact $p$-adic Lie group $G$. In this article, we consider a further generalization of the twisting lemma to $\mathcal{T}[[G]]$ modules, where $G$ is a compact $p$-adic Lie group and $\mathcal{T}$ is a finite extension of $\mathbb{Z}_p[[X]]$. Such modules naturally occur in Hida theory. We also indicate arithmetic application by considering the twisted Euler Characteristic of the big Selmer (respectively fine Selmer) group of a $\Lambda$-adic form over a $p$-adic Lie extension.
$\lambda$-adic模块的扭曲引理
一个经典的扭转引理说,给定一个有限生成的扭转模 $M$ 在Iwasawa代数上 $\mathbb{Z}_p[[\Gamma ]]$ 有 $\Gamma \cong \mathbb{Z}_p, \ \exists$ 连续字符 $\theta: \Gamma \rightarrow \mathbb{Z}_p^\times$ 这样, $ \Gamma^{n}$-扭转的欧拉特性 $M(\theta)$ 是有限的 $n$. 这个扭曲引理已推广到一般紧的Iwasawa代数 $p$一元李群 $G$. 在这篇文章中,我们考虑了扭引理的进一步推广 $\mathcal{T}[[G]]$ 模块,其中 $G$ 是一个契约 $p$-adic李群和 $\mathcal{T}$ 有限扩展是 $\mathbb{Z}_p[[X]]$. 这样的模块自然出现在Hida理论中。通过考虑a的大Selmer(分别为细Selmer)群的扭曲欧拉特性,说明了算法的应用 $\Lambda$-adic形式除以a $p$-adic Lie扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信