Homotopy type of the space of finite propagation unitary operators on $\mathbb{Z}$

IF 0.8 4区 数学 Q2 MATHEMATICS
Tsuyoshi Kato, D. Kishimoto, Mitsunobu Tsutaya
{"title":"Homotopy type of the space of finite propagation unitary operators on $\\mathbb{Z}$","authors":"Tsuyoshi Kato, D. Kishimoto, Mitsunobu Tsutaya","doi":"10.4310/HHA.2023.v25.n1.a20","DOIUrl":null,"url":null,"abstract":"The index theory for the space of finite propagation unitary operators was developed by Gross, Nesme, Vogts and Werner from the viewpoint of quantum walks in mathematical physics. In particular, they proved that $\\pi_0$ of the space is determined by the index. However, nothing is known about the higher homotopy groups. In this article, we describe the homotopy type of the space of finite propagation unitary operators on the Hilbert space of square summable $\\mathbb{C}$-valued $\\mathbb{Z}$-sequences, so we can determine its homotopy groups. We also study the space of (end-)periodic finite propagation unitary operators.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/HHA.2023.v25.n1.a20","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The index theory for the space of finite propagation unitary operators was developed by Gross, Nesme, Vogts and Werner from the viewpoint of quantum walks in mathematical physics. In particular, they proved that $\pi_0$ of the space is determined by the index. However, nothing is known about the higher homotopy groups. In this article, we describe the homotopy type of the space of finite propagation unitary operators on the Hilbert space of square summable $\mathbb{C}$-valued $\mathbb{Z}$-sequences, so we can determine its homotopy groups. We also study the space of (end-)periodic finite propagation unitary operators.
$\mathbb{Z}$上有限传播酉算子空间的同伦类型
Gross、Nesme、Vogts和Werner从数学物理学中的量子行走的角度发展了有限传播酉算子空间的指数理论。特别地,他们证明了空间的$\pi_0$是由索引决定的。然而,对于更高的同伦群却一无所知。本文描述了平方可和$\mathbb{C}$值$\mathbb{Z}$序列的Hilbert空间上有限传播酉算子空间的同伦型,从而可以确定其同伦群。我们还研究了(端)周期有限传播酉算子的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信