A unified approach to Stein’s method for stable distributions

IF 1.3 Q2 STATISTICS & PROBABILITY
N. S. Upadhye, K. Barman
{"title":"A unified approach to Stein’s method for stable distributions","authors":"N. S. Upadhye, K. Barman","doi":"10.1214/20-ps354","DOIUrl":null,"url":null,"abstract":"In this article, we propose a modified technique for finding Stein operator for the class of infinitely divisible distributions using its characteristic function that relaxes the assumption of the first finite moment. Using this technique, we reproduce the Stein operators for stable distributions with $\\alpha\\in(0,2)$ with less efforts. We have shown that a single approach with minor modifications is enough to solve the Stein equations for the stable distributions with $\\alpha\\in(0,1)$ and $\\alpha\\in(1,2)$. Finally, we give applications of our results for stable approximations.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ps354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

Abstract

In this article, we propose a modified technique for finding Stein operator for the class of infinitely divisible distributions using its characteristic function that relaxes the assumption of the first finite moment. Using this technique, we reproduce the Stein operators for stable distributions with $\alpha\in(0,2)$ with less efforts. We have shown that a single approach with minor modifications is enough to solve the Stein equations for the stable distributions with $\alpha\in(0,1)$ and $\alpha\in(1,2)$. Finally, we give applications of our results for stable approximations.
Stein稳定分布方法的统一方法
在这篇文章中,我们提出了一种改进的技术,用它的特征函数来寻找一类无限可分分布的Stein算子,该特征函数放松了第一个有限矩的假设。使用这种技术,我们用较少的精力重现了具有$\alpha\in(0,2)$的稳定分布的Stein算子。我们已经证明,对于具有$\alpha\in(0,1)$和$\alpha \in(1,2)$的稳定分布,只需一种稍作修改的方法就足以求解Stein方程。最后,我们给出了我们的结果在稳定近似中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信