Inexact Double Step Length Method For Solving Systems Of Nonlinear Equations

A. Halilu, M. Waziri, Y. B. Musa
{"title":"Inexact Double Step Length Method For Solving Systems Of Nonlinear Equations","authors":"A. Halilu, M. Waziri, Y. B. Musa","doi":"10.19139/soic-2310-5070-532","DOIUrl":null,"url":null,"abstract":"In this paper, a single direction with double step length method for solving systems of nonlinear equations is presented. Main idea used in the algorithm is to approximate the Jacobian via acceleration parameter. Furthermore, the two step lengths are calculated using inexact line search procedure. This method is matrix-free, and so is advantageous when solving large-scale problems. The proposed method is proven to be globally convergent under appropriate conditions. The preliminary numerical results reported in this paper using a large-scale benchmark test problems show that the proposed method is practically quite effective.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"165-174"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, a single direction with double step length method for solving systems of nonlinear equations is presented. Main idea used in the algorithm is to approximate the Jacobian via acceleration parameter. Furthermore, the two step lengths are calculated using inexact line search procedure. This method is matrix-free, and so is advantageous when solving large-scale problems. The proposed method is proven to be globally convergent under appropriate conditions. The preliminary numerical results reported in this paper using a large-scale benchmark test problems show that the proposed method is practically quite effective.
求解非线性方程组的不精确双步长方法
本文给出了求解非线性方程组的单方向双步长方法。该算法的主要思想是通过加速度参数逼近雅可比矩阵。此外,两个步长计算使用不精确的线搜索程序。这种方法不需要矩阵,因此在求解大规模问题时非常有利。在适当的条件下,证明了该方法是全局收敛的。本文采用大规模基准测试问题的初步数值结果表明,所提出的方法在实践中是相当有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信