Algebraic conditions and the sparsity of spectrally arbitrary patterns

IF 0.8 Q2 MATHEMATICS
Louis Deaett, C. Garnett
{"title":"Algebraic conditions and the sparsity of spectrally arbitrary patterns","authors":"Louis Deaett, C. Garnett","doi":"10.1515/spma-2020-0136","DOIUrl":null,"url":null,"abstract":"Abstract Given a square matrix A, replacing each of its nonzero entries with the symbol * gives its zero-nonzero pattern. Such a pattern is said to be spectrally arbitrary when it carries essentially no information about the eigenvalues of A. A longstanding open question concerns the smallest possible number of nonzero entries in an n × n spectrally arbitrary pattern. The Generalized 2n Conjecture states that, for a pattern that meets an appropriate irreducibility condition, this number is 2n. An example of Shitov shows that this irreducibility is essential; following his technique, we construct a smaller such example. We then develop an appropriate algebraic condition and apply it computationally to show that, for n ≤ 7, the conjecture does hold for ℝ, and that there are essentially only two possible counterexamples over ℂ. Examining these two patterns, we highlight the problem of determining whether or not either is in fact spectrally arbitrary over ℂ. A general method for making this determination for a pattern remains a major goal; we introduce an algebraic tool that may be helpful.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"257 - 274"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0136","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Given a square matrix A, replacing each of its nonzero entries with the symbol * gives its zero-nonzero pattern. Such a pattern is said to be spectrally arbitrary when it carries essentially no information about the eigenvalues of A. A longstanding open question concerns the smallest possible number of nonzero entries in an n × n spectrally arbitrary pattern. The Generalized 2n Conjecture states that, for a pattern that meets an appropriate irreducibility condition, this number is 2n. An example of Shitov shows that this irreducibility is essential; following his technique, we construct a smaller such example. We then develop an appropriate algebraic condition and apply it computationally to show that, for n ≤ 7, the conjecture does hold for ℝ, and that there are essentially only two possible counterexamples over ℂ. Examining these two patterns, we highlight the problem of determining whether or not either is in fact spectrally arbitrary over ℂ. A general method for making this determination for a pattern remains a major goal; we introduce an algebraic tool that may be helpful.
谱任意模式的代数条件和稀疏性
摘要给定一个正方形矩阵a,用符号*替换它的每个非零项会得到它的零-非零模式。当这种模式基本上不携带关于a的特征值的信息时,它被认为是谱任意的。一个长期存在的悬而未决的问题涉及n×n谱任意模式中非零项的最小可能数量。广义2n猜想指出,对于满足适当不可约条件的模式,这个数是2n。希托夫的一个例子表明,这种不可还原性是必不可少的;根据他的技术,我们构造了一个较小的这样的例子。然后,我们发展了一个适当的代数条件,并在计算上应用它来证明,对于n≤7,该猜想确实适用于ℝ, 基本上只有两个可能的反例ℂ. 通过研究这两种模式,我们强调了一个问题,即确定其中一种模式是否实际上是频谱任意的ℂ. 确定模式的一般方法仍然是一个主要目标;我们介绍了一个可能有用的代数工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信