On the measure of noncompactness in $L_p(\mathbb{R}^+)$ and applications to a product of $n$-integral equations

IF 0.8 4区 数学 Q2 MATHEMATICS
M. Metwali, V. Mishra
{"title":"On the measure of noncompactness in $L_p(\\mathbb{R}^+)$ and applications to a product of $n$-integral equations","authors":"M. Metwali, V. Mishra","doi":"10.55730/1300-0098.3365","DOIUrl":null,"url":null,"abstract":": In this article, we prove a new compactness criterion in the Lebesgue spaces L p ( R + ) , 1 ≤ p < ∞ and use such criteria to construct a measure of noncompactness in the mentioned spaces. The conjunction of that measure with the Hausdroff measure of noncompactness is proved on sets that are compact in finite measure. We apply such measure with a modified version of Darbo fixed point theorem in proving the existence of monotonic integrable solutions for a product of n -Hammerstein integral equations n ≥ 2","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3365","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

: In this article, we prove a new compactness criterion in the Lebesgue spaces L p ( R + ) , 1 ≤ p < ∞ and use such criteria to construct a measure of noncompactness in the mentioned spaces. The conjunction of that measure with the Hausdroff measure of noncompactness is proved on sets that are compact in finite measure. We apply such measure with a modified version of Darbo fixed point theorem in proving the existence of monotonic integrable solutions for a product of n -Hammerstein integral equations n ≥ 2
关于$L_p(\mathbb{R}^+)$非紧性的测度及其在$n -积分方程积上的应用
本文证明了Lebesgue空间L p (R +), 1≤p <∞上的紧性判据,并利用该判据构造了Lebesgue空间中的非紧性测度。在有限测度紧的集合上证明了该测度与非紧的Hausdroff测度的合取。我们利用改进的Darbo不动点定理,证明了n -Hammerstein积分方程n≥2的积单调可积解的存在性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信