{"title":"Algebraic properties of Riemannian manifolds","authors":"Youngjoo Chung, Chi-Ok Hwang, Hyun Seok Yang","doi":"10.1007/s10714-023-03141-4","DOIUrl":null,"url":null,"abstract":"<div><p>Algebraic properties are explored for the curvature tensors of Riemannian manifolds, using the irreducible decomposition of curvature tensors. Our method provides a powerful tool to analyze the irreducible basis as well as an algorithm to determine the linear dependence of arbitrary Riemann polynomials. We completely specify 13 independent basis elements for the quartic scalars and explicitly find 13 linear relations among 26 scalar invariants. Our method provides several completely new results, including some clues to identify 23 independent basis elements from 90 quintic scalars, that are difficult to find otherwise.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-023-03141-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
Algebraic properties are explored for the curvature tensors of Riemannian manifolds, using the irreducible decomposition of curvature tensors. Our method provides a powerful tool to analyze the irreducible basis as well as an algorithm to determine the linear dependence of arbitrary Riemann polynomials. We completely specify 13 independent basis elements for the quartic scalars and explicitly find 13 linear relations among 26 scalar invariants. Our method provides several completely new results, including some clues to identify 23 independent basis elements from 90 quintic scalars, that are difficult to find otherwise.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.