Some Mathematical Properties for Marginal Model of Poisson-Gamma Distribution

IF 1 Q1 MATHEMATICS
M. Bin-Saad, J. A. Younis, And Anvar Hasanov
{"title":"Some Mathematical Properties for Marginal Model of Poisson-Gamma Distribution","authors":"M. Bin-Saad, J. A. Younis, And Anvar Hasanov","doi":"10.46793/kgjmat2301.105b","DOIUrl":null,"url":null,"abstract":"Recently, Casadei [4] provided an explicit formula for statistical marginal model in terms of Poisson-Gamma mixture. This model involving certain polynomials which play the key role in reference analysis of the signal and background model in counting experiments. The principal object of this paper is to present a natural further step toward the mathematical properties concerning this polynomials. We first obtain explicit representations for these polynomials in form of the Laguerre polynomials and the confluent hyper-geometric function and then based on these representations we derive a number of useful properties including generating functions, recurrence relations, differential equation, Rodrigueś formula, finite sums and integral transforms.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2301.105b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Casadei [4] provided an explicit formula for statistical marginal model in terms of Poisson-Gamma mixture. This model involving certain polynomials which play the key role in reference analysis of the signal and background model in counting experiments. The principal object of this paper is to present a natural further step toward the mathematical properties concerning this polynomials. We first obtain explicit representations for these polynomials in form of the Laguerre polynomials and the confluent hyper-geometric function and then based on these representations we derive a number of useful properties including generating functions, recurrence relations, differential equation, Rodrigueś formula, finite sums and integral transforms.
泊松分布边缘模型的一些数学性质
最近,Casadei[4]给出了一个基于泊松-伽马混合的统计边际模型的显式公式。该模型涉及到一些多项式,这些多项式在计数实验中信号和背景模型的参考分析中起着关键作用。本文的主要目的是向有关这种多项式的数学性质提出一个自然的进一步的步骤。我们首先得到了这些多项式的拉盖尔多项式和合流超几何函数的显式表示,然后在这些表示的基础上推导出了一些有用的性质,包括生成函数、递归关系、微分方程、rodrigeka公式、有限和和积分变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信