D. Mao, Z. Wang, Y. Wang, Chi-Yeung Choi, M. Jia, M. Jackson, R. Fuller
{"title":"Remote Observations in China’s Ramsar Sites: Wetland Dynamics, Anthropogenic Threats, and Implications for Sustainable Development Goals","authors":"D. Mao, Z. Wang, Y. Wang, Chi-Yeung Choi, M. Jia, M. Jackson, R. Fuller","doi":"10.34133/2021/9849343","DOIUrl":null,"url":null,"abstract":"The Ramsar Convention on Wetlands is an international framework through which countries identify and protect important wetlands. Yet Ramsar wetlands are under substantial anthropogenic pressure worldwide, and tracking ecological change relies on multitemporal data sets. Here, we evaluated the spatial extent, temporal change, and anthropogenic threat to Ramsar wetlands at a national scale across China to determine whether their management is currently sustainable. We analyzed Landsat data to examine wetland dynamics and anthropogenic threats at the 57 Ramsar wetlands in China between 1980 and 2018. Results reveal that Ramsar sites play important roles in preventing wetland loss compared to the dramatic decline of wetlands in the surrounding areas. However, there are declines in wetland area at 18 Ramsar sites. Among those, six lost a wetland area greater than 100 km2, primarily caused by agricultural activities. Consistent expansion of anthropogenic land covers occurred within 43 (75%) Ramsar sites, and anthropogenic threats from land cover change were particularly notable in eastern China. Aquaculture pond expansion and Spartina alterniflora invasion were prominent threats to coastal Ramsar wetlands. The observations within China’s Ramsar sites, which in management regulations have higher levels of protection than other wetlands, can help track progress towards achieving United Nations Sustainable Development Goals (SDGs). The study findings suggest that further and timely actions are required to control the loss and degradation of wetland ecosystems.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9849343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
The Ramsar Convention on Wetlands is an international framework through which countries identify and protect important wetlands. Yet Ramsar wetlands are under substantial anthropogenic pressure worldwide, and tracking ecological change relies on multitemporal data sets. Here, we evaluated the spatial extent, temporal change, and anthropogenic threat to Ramsar wetlands at a national scale across China to determine whether their management is currently sustainable. We analyzed Landsat data to examine wetland dynamics and anthropogenic threats at the 57 Ramsar wetlands in China between 1980 and 2018. Results reveal that Ramsar sites play important roles in preventing wetland loss compared to the dramatic decline of wetlands in the surrounding areas. However, there are declines in wetland area at 18 Ramsar sites. Among those, six lost a wetland area greater than 100 km2, primarily caused by agricultural activities. Consistent expansion of anthropogenic land covers occurred within 43 (75%) Ramsar sites, and anthropogenic threats from land cover change were particularly notable in eastern China. Aquaculture pond expansion and Spartina alterniflora invasion were prominent threats to coastal Ramsar wetlands. The observations within China’s Ramsar sites, which in management regulations have higher levels of protection than other wetlands, can help track progress towards achieving United Nations Sustainable Development Goals (SDGs). The study findings suggest that further and timely actions are required to control the loss and degradation of wetland ecosystems.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.