Yufei Zha, Fan Li, Huanyu Li, Peng Zhang, Wei Huang
{"title":"Reversible Modal Conversion Model for Thermal Infrared Tracking","authors":"Yufei Zha, Fan Li, Huanyu Li, Peng Zhang, Wei Huang","doi":"10.1109/MMUL.2023.3239136","DOIUrl":null,"url":null,"abstract":"Learning powerful CNN representation of the target is a key issue for thermal infrared (TIR) tracking. The lack of massive training TIR data is one of the obstacles to training the network in an end-to-end way from the scratch. Compared to the time-consuming and labor-intensive method of heavily relabeling data, we obtain trainable TIR images by leveraging the massive annotated RGB images in this article. Unlike the traditional image generation models, a modal reversible module is designed to maximize the information propagation between RGB and TIR modals in this work. The advantage is that this module can preserve the modal information as possible when the network is conducted on a large number of aligned RGBT image pairs. Additionally, the fake-TIR features generated by the proposed module are also integrated to enhance the target representation ability when TIR tracking is on-the-fly. To verify the proposed method, we conduct sufficient experiments on both single-modal TIR and multimodal RGBT tracking datasets. In single-modal TIR tracking, the performance of our method is improved by 2.8% and 0.94% on success rate compared with the SOTA on LSOTB-TIR and PTB-TIR dataset. In multimodal RGBT fusion tracking, the proposed method is tested on the RGBT234 and VOT-RGBT2020 datasets and the results have also reached the performance of SOTA.","PeriodicalId":13240,"journal":{"name":"IEEE MultiMedia","volume":"30 1","pages":"8-24"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MultiMedia","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MMUL.2023.3239136","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Learning powerful CNN representation of the target is a key issue for thermal infrared (TIR) tracking. The lack of massive training TIR data is one of the obstacles to training the network in an end-to-end way from the scratch. Compared to the time-consuming and labor-intensive method of heavily relabeling data, we obtain trainable TIR images by leveraging the massive annotated RGB images in this article. Unlike the traditional image generation models, a modal reversible module is designed to maximize the information propagation between RGB and TIR modals in this work. The advantage is that this module can preserve the modal information as possible when the network is conducted on a large number of aligned RGBT image pairs. Additionally, the fake-TIR features generated by the proposed module are also integrated to enhance the target representation ability when TIR tracking is on-the-fly. To verify the proposed method, we conduct sufficient experiments on both single-modal TIR and multimodal RGBT tracking datasets. In single-modal TIR tracking, the performance of our method is improved by 2.8% and 0.94% on success rate compared with the SOTA on LSOTB-TIR and PTB-TIR dataset. In multimodal RGBT fusion tracking, the proposed method is tested on the RGBT234 and VOT-RGBT2020 datasets and the results have also reached the performance of SOTA.
期刊介绍:
The magazine contains technical information covering a broad range of issues in multimedia systems and applications. Articles discuss research as well as advanced practice in hardware/software and are expected to span the range from theory to working systems. Especially encouraged are papers discussing experiences with new or advanced systems and subsystems. To avoid unnecessary overlap with existing publications, acceptable papers must have a significant focus on aspects unique to multimedia systems and applications. These aspects are likely to be related to the special needs of multimedia information compared to other electronic data, for example, the size requirements of digital media and the importance of time in the representation of such media. The following list is not exhaustive, but is representative of the topics that are covered: Hardware and software for media compression, coding & processing; Media representations & standards for storage, editing, interchange, transmission & presentation; Hardware platforms supporting multimedia applications; Operating systems suitable for multimedia applications; Storage devices & technologies for multimedia information; Network technologies, protocols, architectures & delivery techniques intended for multimedia; Synchronization issues; Multimedia databases; Formalisms for multimedia information systems & applications; Programming paradigms & languages for multimedia; Multimedia user interfaces; Media creation integration editing & management; Creation & modification of multimedia applications.