Bounding error of calculating the matrix functions

IF 1.1 Q2 MATHEMATICS, APPLIED
Marzieh Dehghani-Madiseh
{"title":"Bounding error of calculating the matrix functions","authors":"Marzieh Dehghani-Madiseh","doi":"10.22034/CMDE.2020.38964.1708","DOIUrl":null,"url":null,"abstract":"Matrix functions play important roles in various branches of science and engineering. In numerical computations and physical measurements there are several sources of error which significantly affect the main results obtained from solving the problems. This effect also influences the matrix computations. In this paper, we propose some approaches to enclose the matrix functions. We then present some analytical arguments to ensure that the obtained enclosures contain the exact result. Numerical experiments are given to illustrate the performance and effectiveness of the proposed approaches.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.38964.1708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Matrix functions play important roles in various branches of science and engineering. In numerical computations and physical measurements there are several sources of error which significantly affect the main results obtained from solving the problems. This effect also influences the matrix computations. In this paper, we propose some approaches to enclose the matrix functions. We then present some analytical arguments to ensure that the obtained enclosures contain the exact result. Numerical experiments are given to illustrate the performance and effectiveness of the proposed approaches.
计算矩阵函数的边界误差
矩阵函数在科学和工程的各个分支中发挥着重要作用。在数值计算和物理测量中,存在几个误差源,这些误差源严重影响从解决问题中获得的主要结果。这种效应也会影响矩阵计算。在本文中,我们提出了一些封闭矩阵函数的方法。然后,我们提出一些分析论点,以确保获得的附件包含确切的结果。通过数值实验验证了所提方法的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信