Ball comparison between Jarratt’s and other fourth order method for solving equations

IF 0.6 Q3 MATHEMATICS
I. Argyros, S. George
{"title":"Ball comparison between Jarratt’s and other fourth order method for solving equations","authors":"I. Argyros, S. George","doi":"10.4067/S0719-06462018000300065","DOIUrl":null,"url":null,"abstract":"The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4067/S0719-06462018000300065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0719-06462018000300065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The convergence order of iterative methods is determined using high order derivatives and Taylor series, and without providing computable error bounds, uniqueness of the solution results or information on how to choose the initial point. We address all these problems by using hypotheses only on the first derivative. Moreover, to achieve all these we present our technique using a comparison between the convergence radii of Jarratt’s fourth order method and another method of the same convergence order.
Jarratt法与其它四阶解方程法的球比较
迭代方法的收敛阶是利用高阶导数和泰勒级数确定的,没有提供可计算的误差界、解结果的唯一性或如何选择初始点的信息。我们只用一阶导数上的假设来解决所有这些问题。此外,为了达到这些目的,我们利用Jarratt的四阶方法的收敛半径与另一种相同收敛阶的方法的收敛半径进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信