{"title":"Planning to chronicle: Optimal policies for narrative observation of unpredictable events","authors":"Hazhar Rahmani, Dylan A. Shell, J. O’Kane","doi":"10.1177/02783649211069154","DOIUrl":null,"url":null,"abstract":"One important class of applications entails a robot scrutinizing, monitoring, or recording the evolution of an uncertain time-extended process. This sort of situation leads to an interesting family of active perception problems that can be cast as planning problems in which the robot is limited in what it sees and must, thus, choose what to pay attention to. The distinguishing characteristic of this setting is that the robot has influence over what it captures via its sensors, but exercises no causal authority over the process evolving in the world. As such, the robot’s objective is to observe the underlying process and to produce a “chronicle” of occurrent events, subject to a goal specification of the sorts of event sequences that may be of interest. This paper examines variants of such problems in which the robot aims to collect sets of observations to meet a rich specification of their sequential structure. We study this class of problems by modeling a stochastic process via a variant of a hidden Markov model and specify the event sequences of interest as a regular language, developing a vocabulary of “mutators” that enable sophisticated requirements to be expressed. Under different suppositions on the information gleaned about the event model, we formulate and solve different planning problems. The core underlying idea is the construction of a product between the event model and a specification automaton. Using this product, we compute a policy that minimizes the expected number of steps to reach a goal state. We introduce a general algorithm for this problem as well as several more efficient algorithms for important special cases. The paper reports and compares performance metrics by drawing on some small case studies analyzed in depth via simulation. Specifically, we study the effect of the robot’s observation model on the average time required for the robot to record a desired story. We also compare our algorithm with a baseline greedy algorithm, showing that our algorithm outperforms the greedy algorithm in terms of the average time to record a desired story. In addition, experiments show that the algorithms tailored to specialized variants of the problem are rather more efficient than the general algorithm.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"412 - 432"},"PeriodicalIF":7.5000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649211069154","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1
Abstract
One important class of applications entails a robot scrutinizing, monitoring, or recording the evolution of an uncertain time-extended process. This sort of situation leads to an interesting family of active perception problems that can be cast as planning problems in which the robot is limited in what it sees and must, thus, choose what to pay attention to. The distinguishing characteristic of this setting is that the robot has influence over what it captures via its sensors, but exercises no causal authority over the process evolving in the world. As such, the robot’s objective is to observe the underlying process and to produce a “chronicle” of occurrent events, subject to a goal specification of the sorts of event sequences that may be of interest. This paper examines variants of such problems in which the robot aims to collect sets of observations to meet a rich specification of their sequential structure. We study this class of problems by modeling a stochastic process via a variant of a hidden Markov model and specify the event sequences of interest as a regular language, developing a vocabulary of “mutators” that enable sophisticated requirements to be expressed. Under different suppositions on the information gleaned about the event model, we formulate and solve different planning problems. The core underlying idea is the construction of a product between the event model and a specification automaton. Using this product, we compute a policy that minimizes the expected number of steps to reach a goal state. We introduce a general algorithm for this problem as well as several more efficient algorithms for important special cases. The paper reports and compares performance metrics by drawing on some small case studies analyzed in depth via simulation. Specifically, we study the effect of the robot’s observation model on the average time required for the robot to record a desired story. We also compare our algorithm with a baseline greedy algorithm, showing that our algorithm outperforms the greedy algorithm in terms of the average time to record a desired story. In addition, experiments show that the algorithms tailored to specialized variants of the problem are rather more efficient than the general algorithm.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.