{"title":"Non-Nested Monte Carlo Dual Bounds for Multi-Exercisable Options","authors":"Xiang Cheng, Z. Jin","doi":"10.31390/COSA.13.3.02","DOIUrl":null,"url":null,"abstract":"We study the optimal marginal value of discrete-time optimal multiple stopping problems and find that it can be formulated as a single optimal stopping optimization as well. Based on this result propose a marginal-value-based lower bound method to achieve a small bound on the iterative error. We further introduce a non-nested upper bound method. The convergence of both methods is analysed. The implementation details and enhancement techniques are discussed as well. Overall, our methods make a good trade-off between the time-efficiency and the tightness in dual bounds.","PeriodicalId":53434,"journal":{"name":"Communications on Stochastic Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.13.3.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We study the optimal marginal value of discrete-time optimal multiple stopping problems and find that it can be formulated as a single optimal stopping optimization as well. Based on this result propose a marginal-value-based lower bound method to achieve a small bound on the iterative error. We further introduce a non-nested upper bound method. The convergence of both methods is analysed. The implementation details and enhancement techniques are discussed as well. Overall, our methods make a good trade-off between the time-efficiency and the tightness in dual bounds.
期刊介绍:
The journal Communications on Stochastic Analysis (COSA) is published in four issues annually (March, June, September, December). It aims to present original research papers of high quality in stochastic analysis (both theory and applications) and emphasizes the global development of the scientific community. The journal welcomes articles of interdisciplinary nature. Expository articles of current interest will occasionally be published. COSAis indexed in Mathematical Reviews (MathSciNet), Zentralblatt für Mathematik, and SCOPUS