Optimal Control and Bifurcation Issues for Lorenz-Rössler Model

Saba Alwan, A. M. Al-Mahdi, O. Odhah
{"title":"Optimal Control and Bifurcation Issues for Lorenz-Rössler Model","authors":"Saba Alwan, A. M. Al-Mahdi, O. Odhah","doi":"10.4236/ojop.2020.93006","DOIUrl":null,"url":null,"abstract":"Optimal control is one of the most popular decision-making tools recently in many researches and in many areas. The Lorenz-Rossler model is one of the interesting models because of the idea of consolidation of the two models: Lorenz and ossler. This paper discusses the Lorenz-Rossler model from the bifurcation phenomena and the optimal control problem (OCP). The bifurcation property at the system equilibrium is studied and it is found that saddle-node and Hopf bifurcations can be holed under some conditions on the parameters. Also, the problem of the optimal control of Lorenz-Rossler model is discussed and it uses the Pontryagin’s Maximum Principle (PMP) to derive the optimal control inputs that achieve the optimal trajectory. Numerical examples and solutions for bifurcation cases and the optimal controlled system are carried out and shown graphically to show the effectiveness of the used procedure.","PeriodicalId":66387,"journal":{"name":"最优化(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"最优化(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojop.2020.93006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal control is one of the most popular decision-making tools recently in many researches and in many areas. The Lorenz-Rossler model is one of the interesting models because of the idea of consolidation of the two models: Lorenz and ossler. This paper discusses the Lorenz-Rossler model from the bifurcation phenomena and the optimal control problem (OCP). The bifurcation property at the system equilibrium is studied and it is found that saddle-node and Hopf bifurcations can be holed under some conditions on the parameters. Also, the problem of the optimal control of Lorenz-Rossler model is discussed and it uses the Pontryagin’s Maximum Principle (PMP) to derive the optimal control inputs that achieve the optimal trajectory. Numerical examples and solutions for bifurcation cases and the optimal controlled system are carried out and shown graphically to show the effectiveness of the used procedure.
Lorenz-Rössler模型的最优控制与分岔问题
最优控制是近年来许多研究和领域中最流行的决策工具之一。Lorenz-Rossler模型是一个有趣的模型,因为Lorenz和ossler这两个模型的合并思想。本文从分岔现象和最优控制问题(OCP)两个方面讨论了Lorenz-Rossler模型。研究了系统平衡时的分岔性质,发现在参数一定的条件下,鞍节点分岔和Hopf分岔是可以开孔的。此外,还讨论了Lorenz-Rossler模型的最优控制问题,并利用Pontryagin最大值原理(PMP)导出了实现最优轨迹的最优控制输入。对分岔情况和最优控制系统进行了数值算例和求解,并用图形显示了所用程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信