On the singular gamma, Wishart, and beta matrix-variate density functions

Pub Date : 2022-07-04 DOI:10.1002/cjs.11710
Arak M. Mathai, Serge B. Provost
{"title":"On the singular gamma, Wishart, and beta matrix-variate density functions","authors":"Arak M. Mathai,&nbsp;Serge B. Provost","doi":"10.1002/cjs.11710","DOIUrl":null,"url":null,"abstract":"<p>When a <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>×</mo>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p\\times p $$</annotation>\n </semantics></math> real positive definite matrix <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation>$$ S $$</annotation>\n </semantics></math> follows a Wishart or, more generally, a matrix-variate gamma distribution with shape parameter <math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> and positive definite scale parameter matrix <math>\n <semantics>\n <mrow>\n <mi>B</mi>\n </mrow>\n <annotation>$$ B $$</annotation>\n </semantics></math>, one can represent <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation>$$ S $$</annotation>\n </semantics></math> as <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ X{X}^{\\prime } $$</annotation>\n </semantics></math> for some matrix <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation>$$ X $$</annotation>\n </semantics></math> of dimension <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>×</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$$ p\\times q $$</annotation>\n </semantics></math>. When <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>&gt;</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$$ p&gt;q $$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation>$$ S $$</annotation>\n </semantics></math> has a singular distribution whose properties can be studied via the density function of <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation>$$ X $$</annotation>\n </semantics></math>. It will be shown that when <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation>$$ X $$</annotation>\n </semantics></math> follows a matrix-variate extended Gaussian distribution, the density function of the resulting singular gamma distribution can be obtained by making use of successive transformations and their associated Jacobians. The singular Wishart distribution will then be obtained as a particular case. The marginal and conditional density functions resulting from an arbitrary partitioning of <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation>$$ X $$</annotation>\n </semantics></math> will be considered as well. The same technique will also be applied to the derivation of the density functions of real and complex singular type-1 and type-2 beta-distributed matrices. It so happens that the proposed approach, which is based on manipulations involving the wedge products of certain differential elements, generally proves more efficient than the intricate procedures that have hitherto been employed in the literature.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11710","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

When a p × p $$ p\times p $$ real positive definite matrix S $$ S $$ follows a Wishart or, more generally, a matrix-variate gamma distribution with shape parameter α $$ \alpha $$ and positive definite scale parameter matrix B $$ B $$ , one can represent S $$ S $$ as X X $$ X{X}^{\prime } $$ for some matrix X $$ X $$ of dimension p × q $$ p\times q $$ . When p > q $$ p>q $$ , S $$ S $$ has a singular distribution whose properties can be studied via the density function of X $$ X $$ . It will be shown that when X $$ X $$ follows a matrix-variate extended Gaussian distribution, the density function of the resulting singular gamma distribution can be obtained by making use of successive transformations and their associated Jacobians. The singular Wishart distribution will then be obtained as a particular case. The marginal and conditional density functions resulting from an arbitrary partitioning of X $$ X $$ will be considered as well. The same technique will also be applied to the derivation of the density functions of real and complex singular type-1 and type-2 beta-distributed matrices. It so happens that the proposed approach, which is based on manipulations involving the wedge products of certain differential elements, generally proves more efficient than the intricate procedures that have hitherto been employed in the literature.

分享
查看原文
关于奇异的γ、Wishart和β矩阵变量密度函数
当一个p×p$$ p\times p $$ 实正定矩阵S$$ S $$ 遵循Wishart分布,或者更一般地说,遵循形状参数为α的矩阵变量伽马分布$$ \alpha $$ 和正定尺度参数矩阵B$$ B $$ ,可以表示S$$ S $$ 作为XX’$$ X{X}^{\prime } $$ 对于某个矩阵X$$ X $$ 尺寸为p×q$$ p\times q $$ . 当p>q$$ p>q $$ ,$$ S $$ 有一个奇异分布,其性质可以通过X的密度函数来研究$$ X $$ . 当X$$ X $$ 遵循矩阵变量扩展高斯分布,由此产生的奇异分布的密度函数可以通过使用连续变换及其相关的雅可比矩阵得到。然后将奇异Wishart分布作为一种特殊情况得到。由X的任意划分产生的边际和条件密度函数$$ X $$ 也会被考虑。同样的技术也将应用于实和复奇异型- 1和型- 2 β -分布矩阵的密度函数的推导。碰巧的是,所提出的方法是基于涉及某些微分元素的楔形积的操作,通常证明比迄今为止在文献中使用的复杂程序更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信