Symmetric Riemann surfaces with no points fixed by orientation preserving automorphisms

Pub Date : 2020-09-03 DOI:10.7146/math.scand.a-121167
Ewa Kozłowska-Walania
{"title":"Symmetric Riemann surfaces with no points fixed by orientation preserving automorphisms","authors":"Ewa Kozłowska-Walania","doi":"10.7146/math.scand.a-121167","DOIUrl":null,"url":null,"abstract":"We study the symmetric Riemann surfaces for which the group of orientation preserving automorphisms acts without fixed points. We show that any finite group can give rise to such an action, determine the maximal number of non-conjugate symmetries for such surfaces and find a sharp upper bound on maximal total number of ovals for a set of k symmetries with ovals. We also solve the minimal genus problem for dihedral groups acting on the surfaces described above, for odd genera.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-121167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the symmetric Riemann surfaces for which the group of orientation preserving automorphisms acts without fixed points. We show that any finite group can give rise to such an action, determine the maximal number of non-conjugate symmetries for such surfaces and find a sharp upper bound on maximal total number of ovals for a set of k symmetries with ovals. We also solve the minimal genus problem for dihedral groups acting on the surfaces described above, for odd genera.
分享
查看原文
无定点对称黎曼曲面的保向自同构
我们研究了一组保向自同构在没有不动点的情况下作用的对称黎曼曲面。我们证明了任何有限群都可以产生这样的作用,确定了这种曲面的非共轭对称性的最大数目,并找到了一组具有椭圆的k个对称性的椭圆最大总数的一个尖锐上界。我们还解决了作用在上述曲面上的二面体群的最小亏格问题,对于奇数亏格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信