An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
A. Ersan, A. Kipcak, Meral Yildirim Ozen, N. Tugrul
{"title":"An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry","authors":"A. Ersan, A. Kipcak, Meral Yildirim Ozen, N. Tugrul","doi":"10.1515/mgmc-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract Recently, sonochemistry has been used for the synthesis of inorganic compounds, such as zinc borates. In this study using zinc sulphate heptahydrate (ZnSO4·7H2O) and boric acid (H3BO3) as starting materials, a zinc borate compound in the form of Zn3B6O12·3.5H2O was synthesized using an ultrasonic probe. Product’s characterization was carried out with using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Zinc borate compound’s chemical bond structure was observed with Raman and FTIR. From the XRD results it was seen that Zn3B6O12·3.5H2O can be quickly synthesized upon heating at 80°C and 85°C (55 min) or 90°C (45 min) in very high yield (>90%). The minimum particle size obtained was ~143 μm from the SEM results. Zinc borate compound was synthesized at a lower temperature in less time than other synthesized zinc metal compound in literature.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"43 1","pages":"7 - 14"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2020-0002","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2020-0002","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract Recently, sonochemistry has been used for the synthesis of inorganic compounds, such as zinc borates. In this study using zinc sulphate heptahydrate (ZnSO4·7H2O) and boric acid (H3BO3) as starting materials, a zinc borate compound in the form of Zn3B6O12·3.5H2O was synthesized using an ultrasonic probe. Product’s characterization was carried out with using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Zinc borate compound’s chemical bond structure was observed with Raman and FTIR. From the XRD results it was seen that Zn3B6O12·3.5H2O can be quickly synthesized upon heating at 80°C and 85°C (55 min) or 90°C (45 min) in very high yield (>90%). The minimum particle size obtained was ~143 μm from the SEM results. Zinc borate compound was synthesized at a lower temperature in less time than other synthesized zinc metal compound in literature.
用声化学法由硫酸锌加速有效合成硼酸锌
摘要近年来,声化学已被用于合成无机化合物,如硼酸锌。本研究以七水硫酸锌(ZnSO4·7H2O)和硼酸(H3BO3)为原料,用超声波探针合成了Zn3B6O12·3.5H2O形式的硼酸锌化合物。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)和拉曼光谱对产物进行了表征。用拉曼光谱和红外光谱观察了硼酸锌化合物的化学键结构。从XRD结果可以看出,在80°C和85°C(55分钟)或90°C(45分钟)下加热可以快速合成Zn3B6O12·3.5H2O,产率非常高(>90%)。根据SEM结果,获得的最小颗粒尺寸为~143μm。硼酸锌化合物的合成温度较低,合成时间较短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信