Two-stage submodular maximization problem beyond nonnegative and monotone

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Zhicheng Liu, Hong Chang, Ran Ma, D. Du, Xiaoyan Zhang
{"title":"Two-stage submodular maximization problem beyond nonnegative and monotone","authors":"Zhicheng Liu, Hong Chang, Ran Ma, D. Du, Xiaoyan Zhang","doi":"10.1017/s0960129521000372","DOIUrl":null,"url":null,"abstract":"\n We consider a two-stage submodular maximization problem subject to a cardinality constraint and k matroid constraints, where the objective function is the expected difference of a nonnegative monotone submodular function and a nonnegative monotone modular function. We give two bi-factor approximation algorithms for this problem. The first is a deterministic \n \n \n $\\left( {{1 \\over {k + 1}}\\left( {1 - {1 \\over {{e^{k + 1}}}}} \\right),1} \\right)$\n \n -approximation algorithm, and the second is a randomized \n \n \n $\\left( {{1 \\over {k + 1}}\\left( {1 - {1 \\over {{e^{k + 1}}}}} \\right) - \\varepsilon ,1} \\right)$\n \n -approximation algorithm with improved time efficiency.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129521000372","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a two-stage submodular maximization problem subject to a cardinality constraint and k matroid constraints, where the objective function is the expected difference of a nonnegative monotone submodular function and a nonnegative monotone modular function. We give two bi-factor approximation algorithms for this problem. The first is a deterministic $\left( {{1 \over {k + 1}}\left( {1 - {1 \over {{e^{k + 1}}}}} \right),1} \right)$ -approximation algorithm, and the second is a randomized $\left( {{1 \over {k + 1}}\left( {1 - {1 \over {{e^{k + 1}}}}} \right) - \varepsilon ,1} \right)$ -approximation algorithm with improved time efficiency.
超越非负单调的两阶段子模最大化问题
我们考虑一个受基数约束和k拟阵约束的两阶段子模最大化问题,其中目标函数是非负单调子模函数和非负单调模函数的期望差。针对这个问题,我们给出了两种双因子近似算法。第一种是确定性$\left({{1\over{k+1}}\left({1-{1\over{e^{k+1}}\right),1}\right)$-近似算法,第二种是具有改进的时间效率的随机$\lefort({1\over{k+1}}\left({1-{1\over{e^{k+1}}\right)-\varepsilon,1}\right)$-逼近算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信