{"title":"Lightweighting of Wishbone Finite Element Analysis","authors":"Shuxian Wang, P. L. Chong, D. Hughes","doi":"10.24423/ENGTRANS.1069.20200211","DOIUrl":null,"url":null,"abstract":"This paper focuses on lightweighting of wishbone structure for ordinary 5-seated commercial vehicle. Typically, the wishbone structure is made of high carbon steel and the aim is to investigate if the composite materials, such as E-Glass/Epoxy, Carbon/Epoxy and Boron/Epoxy, can achieve the lightweighting purpose without compromising material strength. The study is carried out through finite element package (Siemen NX) with the consideration of three different loading conditions, namely, lateral braking force, vertical and longitudinal braking force. Throughout the study, it is found that both Carbon/Epoxy and Boron/Epoxy composites is able to reduce the weight of the component by 46% while maintaining the required strength.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"68 1","pages":"103-114"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1069.20200211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
This paper focuses on lightweighting of wishbone structure for ordinary 5-seated commercial vehicle. Typically, the wishbone structure is made of high carbon steel and the aim is to investigate if the composite materials, such as E-Glass/Epoxy, Carbon/Epoxy and Boron/Epoxy, can achieve the lightweighting purpose without compromising material strength. The study is carried out through finite element package (Siemen NX) with the consideration of three different loading conditions, namely, lateral braking force, vertical and longitudinal braking force. Throughout the study, it is found that both Carbon/Epoxy and Boron/Epoxy composites is able to reduce the weight of the component by 46% while maintaining the required strength.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.