Lightweighting of Wishbone Finite Element Analysis

Q2 Engineering
Shuxian Wang, P. L. Chong, D. Hughes
{"title":"Lightweighting of Wishbone Finite Element Analysis","authors":"Shuxian Wang, P. L. Chong, D. Hughes","doi":"10.24423/ENGTRANS.1069.20200211","DOIUrl":null,"url":null,"abstract":"This paper focuses on lightweighting of wishbone structure for ordinary 5-seated commercial vehicle. Typically, the wishbone structure is made of high carbon steel and the aim is to investigate if the composite materials, such as E-Glass/Epoxy, Carbon/Epoxy and Boron/Epoxy, can achieve the lightweighting purpose without compromising material strength. The study is carried out through finite element package (Siemen NX) with the consideration of three different loading conditions, namely, lateral braking force, vertical and longitudinal braking force. Throughout the study, it is found that both Carbon/Epoxy and Boron/Epoxy composites is able to reduce the weight of the component by 46% while maintaining the required strength.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"68 1","pages":"103-114"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1069.20200211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This paper focuses on lightweighting of wishbone structure for ordinary 5-seated commercial vehicle. Typically, the wishbone structure is made of high carbon steel and the aim is to investigate if the composite materials, such as E-Glass/Epoxy, Carbon/Epoxy and Boron/Epoxy, can achieve the lightweighting purpose without compromising material strength. The study is carried out through finite element package (Siemen NX) with the consideration of three different loading conditions, namely, lateral braking force, vertical and longitudinal braking force. Throughout the study, it is found that both Carbon/Epoxy and Boron/Epoxy composites is able to reduce the weight of the component by 46% while maintaining the required strength.
叉骨轻量化有限元分析
本文主要研究普通5座商用车叉骨结构的轻量化问题。通常,叉骨结构由高碳钢制成,目的是研究E-Glass/环氧树脂、碳/环氧树脂和硼/环氧树脂等复合材料能否在不影响材料强度的情况下实现轻量化目的。通过有限元软件包(siemens NX)进行研究,考虑了侧向制动力、垂直制动力和纵向制动力三种不同的加载条件。在整个研究过程中,发现碳/环氧树脂和硼/环氧树脂复合材料都能够在保持所需强度的同时将组件的重量减轻46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信