A DYNAMIC PROGRAMMING ALGORITHM FOR OPTIMIZING BASEBALL STRATEGIES

Q4 Decision Sciences
Akifumi Kira, Keisuke Inakawa, Toshiharu Fujita
{"title":"A DYNAMIC PROGRAMMING ALGORITHM FOR OPTIMIZING BASEBALL STRATEGIES","authors":"Akifumi Kira, Keisuke Inakawa, Toshiharu Fujita","doi":"10.15807/JORSJ.62.64","DOIUrl":null,"url":null,"abstract":"In this paper, baseball is formulated as a finite Markov game with approximately 6.45 million states. We give an effective dynamic programming algorithm which computes Markov perfect equilibria and the value functions of the game for both teams in 2 second per game. Optimal decision making can be found depending on the situation—for example, for the batting team, whether batting for a hit, stealing a base or sacrifice bunting will maximize their win percentage, or for the fielding team, whether to pitch to or intentionally walk a batter, yields optimal results. In addition, our algorithm makes it possible to compute the optimal batting order, in consideration of strategy optimization such as a sacrifice bunt or a stolen base. The authors believe that this baseball model is also useful as a benchmark instance for evaluating the performances of (multi-agent) Reinforcement Learning methods.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.62.64","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.62.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, baseball is formulated as a finite Markov game with approximately 6.45 million states. We give an effective dynamic programming algorithm which computes Markov perfect equilibria and the value functions of the game for both teams in 2 second per game. Optimal decision making can be found depending on the situation—for example, for the batting team, whether batting for a hit, stealing a base or sacrifice bunting will maximize their win percentage, or for the fielding team, whether to pitch to or intentionally walk a batter, yields optimal results. In addition, our algorithm makes it possible to compute the optimal batting order, in consideration of strategy optimization such as a sacrifice bunt or a stolen base. The authors believe that this baseball model is also useful as a benchmark instance for evaluating the performances of (multi-agent) Reinforcement Learning methods.
棒球策略优化的动态规划算法
在本文中,棒球被公式化为具有大约645万个状态的有限马尔可夫对策。我们给出了一个有效的动态规划算法,该算法在每场比赛2秒内计算出两支球队的马尔可夫完全均衡和比赛的值函数。最佳决策可以根据情况而定——例如,对于击球队来说,无论是击球击球、盗垒还是牺牲彩旗都会最大限度地提高他们的胜率,或者对于守备队来说,是向击球手投球还是故意保送击球手,都会产生最佳结果。此外,我们的算法使计算最佳击球顺序成为可能,同时考虑到策略优化,如牺牲短棍或盗垒。作者认为,这个棒球模型也可以作为评估(多智能体)强化学习方法性能的基准实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信