One-relator Sasakian groups

Pub Date : 2021-01-26 DOI:10.4064/CM8521-3-2021
I. Biswas, Mahan Mj
{"title":"One-relator Sasakian groups","authors":"I. Biswas, Mahan Mj","doi":"10.4064/CM8521-3-2021","DOIUrl":null,"url":null,"abstract":"We prove that any one-relator group $G$ is the fundamental group of a compact Sasakian manifold if and only if $G$ is either finite cyclic or isomorphic to the fundamental group of a compact Riemann surface of genus g > 0 with at most one orbifold point of order $n \\geq 1$. We also classify all groups of deficiency at least two that are also the fundamental group of some compact Sasakian manifold.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/CM8521-3-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We prove that any one-relator group $G$ is the fundamental group of a compact Sasakian manifold if and only if $G$ is either finite cyclic or isomorphic to the fundamental group of a compact Riemann surface of genus g > 0 with at most one orbifold point of order $n \geq 1$. We also classify all groups of deficiency at least two that are also the fundamental group of some compact Sasakian manifold.
分享
查看原文
一个亲戚佐佐木集团
我们证明了任何一个相关群$G$是紧致Sasakian流形的基群,当且仅当$G$要么是有限循环的,要么同构于亏格G>0的紧致Riemann曲面的基群(至多有一个阶为$n\geq1$的折叠点)。我们还将所有的亏群至少分类为两个,它们也是一些紧致Sasakian流形的基群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信