Products of skew-involutions

IF 0.7 4区 数学 Q2 Mathematics
Jesus Paolo Joven, Agnes T. Paras
{"title":"Products of skew-involutions","authors":"Jesus Paolo Joven, Agnes T. Paras","doi":"10.13001/ela.2023.7709","DOIUrl":null,"url":null,"abstract":"It is shown that every $2n$-by-$2n$ matrix over a field $\\mathbb{F}$ with determinant 1 is a product of (i) four or fewer skew-involutions ($A^2 = -I$) provided $\\mathbb{F} \\neq \\mathbb{Z}_3$, and (ii) eight or fewer skew-involutions if $\\mathbb{F} = \\mathbb{Z}_3$ and $n > 1$. Every real symplectic matrix is a product of six real symplectic skew-involutions, and an explicit factorization of a complex symplectic matrix into two symplectic skew-involutions is given.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7709","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

It is shown that every $2n$-by-$2n$ matrix over a field $\mathbb{F}$ with determinant 1 is a product of (i) four or fewer skew-involutions ($A^2 = -I$) provided $\mathbb{F} \neq \mathbb{Z}_3$, and (ii) eight or fewer skew-involutions if $\mathbb{F} = \mathbb{Z}_3$ and $n > 1$. Every real symplectic matrix is a product of six real symplectic skew-involutions, and an explicit factorization of a complex symplectic matrix into two symplectic skew-involutions is given.
斜对合的乘积
证明了行列式为1的域$\mathbb{F}$上的每一个$2n$乘-$2n$矩阵是(i)四个或更少的偏斜对合($a^2=-i$)的乘积{Z}_3$,以及(ii)如果$\mathbb{F}=\mathbb,则八个或更少的偏斜对合{Z}_3$和$n>1$。每一个实辛矩阵都是六个实辛斜对合的乘积,并给出了将一个复辛矩阵分解为两个辛斜对积的显式分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信