{"title":"Harer–Zagier formula via Fock space","authors":"D. Lewanski","doi":"10.4310/cntp.2019.v13.n3.a4","DOIUrl":null,"url":null,"abstract":"The goal of this note is to provide a very short proof of Harer-Zagier formula for the number of ways of obtaining a genus g Riemann surface by identifying in pairs the sides of a (2d)-gon, using semi-infinite wedge formalism operators.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2019.v13.n3.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
The goal of this note is to provide a very short proof of Harer-Zagier formula for the number of ways of obtaining a genus g Riemann surface by identifying in pairs the sides of a (2d)-gon, using semi-infinite wedge formalism operators.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.