{"title":"Foliations Formed by Generic Coadjoint Orbits of a Class of Real Seven-Dimensional Solvable Lie Groups","authors":"Tu T. C. Nguyen, V. Le","doi":"10.7546/jgsp-61-2021-79-104","DOIUrl":null,"url":null,"abstract":"In this paper, we consider exponential, connected and simply connected Lie groups which are corresponding to seven-dimensional Lie algebras such that their nilradical is a five-dimensional nilpotent Lie algebra $\\mathfrak{g}_{5,2}$ given in Table~\\ref{tab1}. In particular, we give a description of the geometry of the generic orbits in the coadjoint representation of some considered Lie groups. We prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. The topological classification of these foliations is also provided.","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-61-2021-79-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider exponential, connected and simply connected Lie groups which are corresponding to seven-dimensional Lie algebras such that their nilradical is a five-dimensional nilpotent Lie algebra $\mathfrak{g}_{5,2}$ given in Table~\ref{tab1}. In particular, we give a description of the geometry of the generic orbits in the coadjoint representation of some considered Lie groups. We prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. The topological classification of these foliations is also provided.
期刊介绍:
The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.