Foliations Formed by Generic Coadjoint Orbits of a Class of Real Seven-Dimensional Solvable Lie Groups

IF 0.5 Q4 PHYSICS, MATHEMATICAL
Tu T. C. Nguyen, V. Le
{"title":"Foliations Formed by Generic Coadjoint Orbits of a Class of Real Seven-Dimensional Solvable Lie Groups","authors":"Tu T. C. Nguyen, V. Le","doi":"10.7546/jgsp-61-2021-79-104","DOIUrl":null,"url":null,"abstract":"In this paper, we consider exponential, connected and simply connected Lie groups which are corresponding to seven-dimensional Lie algebras such that their nilradical is a five-dimensional nilpotent Lie algebra $\\mathfrak{g}_{5,2}$ given in Table~\\ref{tab1}. In particular, we give a description of the geometry of the generic orbits in the coadjoint representation of some considered Lie groups. We prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. The topological classification of these foliations is also provided.","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-61-2021-79-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider exponential, connected and simply connected Lie groups which are corresponding to seven-dimensional Lie algebras such that their nilradical is a five-dimensional nilpotent Lie algebra $\mathfrak{g}_{5,2}$ given in Table~\ref{tab1}. In particular, we give a description of the geometry of the generic orbits in the coadjoint representation of some considered Lie groups. We prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. The topological classification of these foliations is also provided.
一类实数七维可解李群的泛协轨道形成的叶理
本文考虑对应于七维李代数的指数、连通和单连通李群,使得它们的零根是表\ref{tab1}所示的五维幂零李代数$\mathfrak{g}_{5,2}$。特别地,我们给出了在一些考虑的李群的协表示中一般轨道的几何形状的描述。我们证明了,对于每一个被考虑的群,一般伴轨道族在圆锥意义上形成一个可测量的叶理。还提供了这些叶理的拓扑分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
25.00%
发文量
3
期刊介绍: The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信