Exact converses to a reverse AM-GM inequality, with applications to sums of independent random variables and (super)martingales

IF 0.9 4区 数学 Q2 MATHEMATICS
I. Pinelis
{"title":"Exact converses to a reverse AM-GM inequality, with applications to sums of independent random variables and (super)martingales","authors":"I. Pinelis","doi":"10.7153/MIA-2021-24-40","DOIUrl":null,"url":null,"abstract":"For every given real value of the ratio $\\mu:=A_X/G_X>1$ of the arithmetic and geometric means of a positive random variable $X$ and every real $v>0$, exact upper bounds on the right- and left-tail probabilities $\\mathsf{P}(X/G_X\\ge v)$ and $\\mathsf{P}(X/G_X\\le v)$ are obtained, in terms of $\\mu$ and $v$. In particular, these bounds imply that $X/G_X\\to1$ in probability as $A_X/G_X\\downarrow1$. Such a result may be viewed as a converse to a reverse Jensen inequality for the strictly concave function $f=\\ln$, whereas the well-known Cantelli and Chebyshev inequalities may be viewed as converses to a reverse Jensen inequality for the strictly concave quadratic function $f(x) \\equiv -x^2$. As applications of the mentioned new results, improvements of the Markov, Bernstein--Chernoff, sub-Gaussian, and Bennett--Hoeffding probability inequalities are given.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-40","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For every given real value of the ratio $\mu:=A_X/G_X>1$ of the arithmetic and geometric means of a positive random variable $X$ and every real $v>0$, exact upper bounds on the right- and left-tail probabilities $\mathsf{P}(X/G_X\ge v)$ and $\mathsf{P}(X/G_X\le v)$ are obtained, in terms of $\mu$ and $v$. In particular, these bounds imply that $X/G_X\to1$ in probability as $A_X/G_X\downarrow1$. Such a result may be viewed as a converse to a reverse Jensen inequality for the strictly concave function $f=\ln$, whereas the well-known Cantelli and Chebyshev inequalities may be viewed as converses to a reverse Jensen inequality for the strictly concave quadratic function $f(x) \equiv -x^2$. As applications of the mentioned new results, improvements of the Markov, Bernstein--Chernoff, sub-Gaussian, and Bennett--Hoeffding probability inequalities are given.
精确的逆AM-GM不等式,应用于独立随机变量和(超)鞅的和
对于正随机变量$X$的算术和几何平均数的比值$\mu:=A_X/G_X>1$和每个实数$v>0$的每个给定实值,就$\mu$和$v$获得了右尾概率$\mathsf{P}(X/G_X\gev)$和左尾概率$/mathsf{P}(X/G_X\lev)$的精确上界。特别地,这些边界意味着$X/G_X\to1$的概率为$A_X/G_X\downarrow1$。这样的结果可以被看作是严格凹函数$f=\ln$的逆詹森不等式的逆,而众所周知的Cantelli和Chebyshev不等式可以被看作严格凹二次函数$f(x)\equi-x^2$的逆Jensen不等式的逆。作为上述新结果的应用,给出了马尔可夫、Bernstein—Chernoff、次高斯和Bennett—Hoeffding概率不等式的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信