H. Häusler, G. Kovacs, E. Wild, P. Steier, B. Heil
{"title":"The Osli Formation – a Holocene lithostratigraphic unit in the Danube/Kisalföld Basin, eastern Austria and northwestern Hungary","authors":"H. Häusler, G. Kovacs, E. Wild, P. Steier, B. Heil","doi":"10.17738/ajes.2021.0005","DOIUrl":null,"url":null,"abstract":"Abstract In the course of field investigations and formalisation of Quaternary deposits in the Lake Neusiedl/Seewinkel and Hanság area the Osli Formation is designated as new formal lithostratigraphic unit. It covers an area of ~200 square kilometres and, in historic times, wetlands such as swamps and peat bogs extended from Waasen in the south-eastern Seewinkel Plain to the Hanság (Kisalföld). Due to missing stratigraphic data this formation cannot be formally divided into two members but into a lower and upper section instead. The lower section of the Osli Formation was cored in the Seewinkel Plain and consists of lacustrine deposits of up to 10 metres in thickness that were presumably deposited during Preboreal. Despite the draining of the Hanság over centuries and decades of peat mining, the upper section of the Osli Formation nowadays still consists of an at least one-meter-thick succession of peat intercalated with fluvio-lacustrine deposits. The investigated peat layers at Tétényi-Hany (~5 km north of Osli) were 14C-dated, ranging in age from ~2,400 BC to 1,500 AD. 14C ages of peat profiles at Osli-Tőzegbánya (Fövenyes-tó), located ~2,5 km northeast of Osli, even date back to ~4,000 BC. Hence the 10 to 12 m thick Osli Formation can be dated as Holocene. It is underlain by Quaternary deposits of the Illmitz Formation.","PeriodicalId":49319,"journal":{"name":"Austrian Journal of Earth Sciences","volume":"114 1","pages":"87 - 97"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17738/ajes.2021.0005","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In the course of field investigations and formalisation of Quaternary deposits in the Lake Neusiedl/Seewinkel and Hanság area the Osli Formation is designated as new formal lithostratigraphic unit. It covers an area of ~200 square kilometres and, in historic times, wetlands such as swamps and peat bogs extended from Waasen in the south-eastern Seewinkel Plain to the Hanság (Kisalföld). Due to missing stratigraphic data this formation cannot be formally divided into two members but into a lower and upper section instead. The lower section of the Osli Formation was cored in the Seewinkel Plain and consists of lacustrine deposits of up to 10 metres in thickness that were presumably deposited during Preboreal. Despite the draining of the Hanság over centuries and decades of peat mining, the upper section of the Osli Formation nowadays still consists of an at least one-meter-thick succession of peat intercalated with fluvio-lacustrine deposits. The investigated peat layers at Tétényi-Hany (~5 km north of Osli) were 14C-dated, ranging in age from ~2,400 BC to 1,500 AD. 14C ages of peat profiles at Osli-Tőzegbánya (Fövenyes-tó), located ~2,5 km northeast of Osli, even date back to ~4,000 BC. Hence the 10 to 12 m thick Osli Formation can be dated as Holocene. It is underlain by Quaternary deposits of the Illmitz Formation.
期刊介绍:
AUSTRIAN JOURNAL OF EARTH SCIENCES is the official journal of the Austrian Geological, Mineralogical and Palaeontological Societies, hosted by a country that is famous for its spectacular mountains that are the birthplace for many geological and mineralogical concepts in modern Earth science.
AUSTRIAN JOURNAL OF EARTH SCIENCE focuses on all aspects relevant to the geosciences of the Alps, Bohemian Massif and surrounding areas. Contributions on other regions are welcome if they embed their findings into a conceptual framework that relates the contribution to Alpine-type orogens and Alpine regions in general, and are thus relevant to an international audience. Contributions are subject to peer review and editorial control according to SCI guidelines to ensure that the required standard of scientific excellence is maintained.