Trace-based cryptanalysis of cyclotomic $R_{q,0}\times R_q$-PLWE for the non-split case

Q3 Mathematics
I. Blanco-Chacón, Ra'ul Dur'an-D'iaz, Rahinatou Yuh Njah Nchiwo, Beatriz Barbero-Lucas
{"title":"Trace-based cryptanalysis of cyclotomic $R_{q,0}\\times R_q$-PLWE for the non-split case","authors":"I. Blanco-Chacón, Ra'ul Dur'an-D'iaz, Rahinatou Yuh Njah Nchiwo, Beatriz Barbero-Lucas","doi":"10.46298/cm.11153","DOIUrl":null,"url":null,"abstract":"We describe a decisional attack against a version of the PLWE problem in\nwhich the samples are taken from a certain proper subring of large dimension of\nthe cyclotomic ring $\\mathbb{F}_q[x]/(\\Phi_{p^k}(x))$ with $k>1$ in the case\nwhere $q\\equiv 1\\pmod{p}$ but $\\Phi_{p^k}(x)$ is not totally split over\n$\\mathbb{F}_q$. Our attack uses the fact that the roots of $\\Phi_{p^k}(x)$ over\nsuitable extensions of $\\mathbb{F}_q$ have zero-trace and has overwhelming\nsuccess probability as a function of the number of input samples. An\nimplementation in Maple and some examples of our attack are also provided.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.11153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

We describe a decisional attack against a version of the PLWE problem in which the samples are taken from a certain proper subring of large dimension of the cyclotomic ring $\mathbb{F}_q[x]/(\Phi_{p^k}(x))$ with $k>1$ in the case where $q\equiv 1\pmod{p}$ but $\Phi_{p^k}(x)$ is not totally split over $\mathbb{F}_q$. Our attack uses the fact that the roots of $\Phi_{p^k}(x)$ over suitable extensions of $\mathbb{F}_q$ have zero-trace and has overwhelming success probability as a function of the number of input samples. An implementation in Maple and some examples of our attack are also provided.
基于迹线的环切术$R_{q,0}\倍R_q$-PLWE的非分裂密码分析
我们描述了对PLWE问题的一个版本的决策攻击,其中样本取自分圆环$\mathbb的某个大维适当子环{F}_q[x] /(\Phi_{p^k}(x))$,其中$k>1$,在$q\equiv 1\pmod{p}$但$\Phi_{p^ k}{F}_q$。我们的攻击使用了这样一个事实,即$\mathbb的$\Phi_{p^k}(x)$过度适配扩展的根{F}_q$具有零跟踪,并且具有作为输入样本数量的函数的压倒性成功概率。还提供了Maple中的实现以及我们攻击的一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信