S. S. Athukorala, Chathudina J. Liyanage, A. Jayasundera
{"title":"Hydroxyapatite incorporated bacterial cellulose hydrogels as a cost-effective 3D cell culture platform","authors":"S. S. Athukorala, Chathudina J. Liyanage, A. Jayasundera","doi":"10.1080/1539445X.2021.1944208","DOIUrl":null,"url":null,"abstract":"ABSTRACT For cell and tissue physiology research, drug discovery, and growing replacement tissues for regenerative medicine, accurate and cost-efficient in vitro techniques are increasingly demanded. The conventional model for in vitro cell culture is the two-dimensional (2D) culture. Yet, cells have been found to be more native when they are grown in 3D conditions. We present here the development and evaluation of biological properties of bacterial cellulose/hydroxyapatite (BC/HA) nanocomposite hydrogel as a potential 3D cell-culture platform. The synthesized composites were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Swelling measurements and Celltiter 96® Aqueous One Solution Cell Proliferation Assay (MTS) using mouse fibroblast cell line (L – 929). The arrangement of composites shown in SEM and AFM images closely resembles the native extracellular matrices (ECM) showing the potential to act as a viable substrate for cell culture. The composites exhibited high swelling ratio (5.31–5.81), indicating enhanced moisture absorption and potential for nutrient exchange. The in vitro biocompatibility results indicated significantly high percentage cell proliferation (85.20%-88.30%). These findings indicate that the BC/HA composites are potential candidates for 3D cell-culture applications.","PeriodicalId":22140,"journal":{"name":"Soft Materials","volume":"20 1","pages":"183 - 192"},"PeriodicalIF":1.6000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1539445X.2021.1944208","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1539445X.2021.1944208","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT For cell and tissue physiology research, drug discovery, and growing replacement tissues for regenerative medicine, accurate and cost-efficient in vitro techniques are increasingly demanded. The conventional model for in vitro cell culture is the two-dimensional (2D) culture. Yet, cells have been found to be more native when they are grown in 3D conditions. We present here the development and evaluation of biological properties of bacterial cellulose/hydroxyapatite (BC/HA) nanocomposite hydrogel as a potential 3D cell-culture platform. The synthesized composites were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Swelling measurements and Celltiter 96® Aqueous One Solution Cell Proliferation Assay (MTS) using mouse fibroblast cell line (L – 929). The arrangement of composites shown in SEM and AFM images closely resembles the native extracellular matrices (ECM) showing the potential to act as a viable substrate for cell culture. The composites exhibited high swelling ratio (5.31–5.81), indicating enhanced moisture absorption and potential for nutrient exchange. The in vitro biocompatibility results indicated significantly high percentage cell proliferation (85.20%-88.30%). These findings indicate that the BC/HA composites are potential candidates for 3D cell-culture applications.
期刊介绍:
Providing a common forum for all soft matter scientists, Soft Materials covers theory, simulation, and experimental research in this rapidly expanding and interdisciplinary field. As soft materials are often at the heart of modern technologies, soft matter science has implications and applications in many areas ranging from biology to engineering.
Unlike many journals which focus primarily on individual classes of materials or particular applications, Soft Materials draw on all physical, chemical, materials science, and biological aspects of soft matter. Featured topics include polymers, biomacromolecules, colloids, membranes, Langmuir-Blodgett films, liquid crystals, granular matter, soft interfaces, complex fluids, surfactants, gels, nanomaterials, self-organization, supramolecular science, molecular recognition, soft glasses, amphiphiles, foams, and active matter.
Truly international in scope, Soft Materials contains original research, invited reviews, in-depth technical tutorials, and book reviews.