{"title":"FORECAST ANALYSIS AND SLIDING MODE CONTROL ON A STOCHASTIC\n\nEPIDEMIC MODEL WITH ALERTNESS AND VACCINATION","authors":"Yue Zhang, Xiju Wu","doi":"10.1051/mmnp/2023003","DOIUrl":null,"url":null,"abstract":"In this paper, a stochastic SEIR epidemic model is studied with alertness and vaccination. The goal is to stabilize the infectious disease system quickly. The dynamic behavior of the model is analyzed and an integral sliding mode controller with distributed compensation is designed. By using Lyapunov function method, the sufficient conditions for the existence and uniqueness of global positive solutions and the existence of ergodic stationary distributions are obtained. The stochastic center manifold and stochastic average method are used to simplify the system into a one-dimensional Markov diffusion process. The stochastic stability and Hopf bifurcation are analyzed using singular boundary theory. An integral sliding mode controller with non-parallel distributed compensation is designed by linear matrix inequality (LMI) method, which realizes the stability of system and prevents the outbreak of epidemic disease. The correction of theoretical analysis and the effectiveness of controller are validated using numerical simulation performed in MATLAB/Simulink.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a stochastic SEIR epidemic model is studied with alertness and vaccination. The goal is to stabilize the infectious disease system quickly. The dynamic behavior of the model is analyzed and an integral sliding mode controller with distributed compensation is designed. By using Lyapunov function method, the sufficient conditions for the existence and uniqueness of global positive solutions and the existence of ergodic stationary distributions are obtained. The stochastic center manifold and stochastic average method are used to simplify the system into a one-dimensional Markov diffusion process. The stochastic stability and Hopf bifurcation are analyzed using singular boundary theory. An integral sliding mode controller with non-parallel distributed compensation is designed by linear matrix inequality (LMI) method, which realizes the stability of system and prevents the outbreak of epidemic disease. The correction of theoretical analysis and the effectiveness of controller are validated using numerical simulation performed in MATLAB/Simulink.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.