On Packing Thirteen Points in an Equilateral Triangle

Natalie Tedeschi
{"title":"On Packing Thirteen Points in an Equilateral Triangle","authors":"Natalie Tedeschi","doi":"10.33697/ajur.2021.042","DOIUrl":null,"url":null,"abstract":"The conversation of how to maximize the minimum distance between points - or, equivalently, pack congruent circles- in an equilateral triangle began by Oler in the 1960s. In a 1993 paper, Melissen proved the optimal placements of 4 through 12 points in an equilateral triangle using only partitions and direct applications of Dirichlet’s pigeon-hole principle. In the same paper, he proposed his conjectured optimal arrangements for 13, 14, 17, and 19 points in an equilateral triangle. In 1997, Payan proved Melissen’s conjecture for the arrangement of fourteen points; and, in September 2020, Joos proved Melissen’s conjecture for the optimal arrangement of thirteen points. These proofs completed the optimal arrangements of up to and including fifteen points in an equilateral triangle. Unlike Melissen’s proofs, however, Joos’s proof for the optimal arrangement of thirteen points in an equilateral triangle requires continuous functions and calculus. I propose that it is possible to continue Melissen’s line of reasoning, and complete an entirely discrete proof of Joos’s Theorem for the optimal arrangement of thirteen points in an equilateral triangle. In this paper, we make progress towards such a proof. We prove discretely that if either of two points is fixed, Joos’s Theorem optimally places the remaining twelve. KEYWORDS: optimization; packing; equilateral triangle; distance; circles; points; thirteen; maximize","PeriodicalId":72177,"journal":{"name":"American journal of undergraduate research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of undergraduate research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33697/ajur.2021.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conversation of how to maximize the minimum distance between points - or, equivalently, pack congruent circles- in an equilateral triangle began by Oler in the 1960s. In a 1993 paper, Melissen proved the optimal placements of 4 through 12 points in an equilateral triangle using only partitions and direct applications of Dirichlet’s pigeon-hole principle. In the same paper, he proposed his conjectured optimal arrangements for 13, 14, 17, and 19 points in an equilateral triangle. In 1997, Payan proved Melissen’s conjecture for the arrangement of fourteen points; and, in September 2020, Joos proved Melissen’s conjecture for the optimal arrangement of thirteen points. These proofs completed the optimal arrangements of up to and including fifteen points in an equilateral triangle. Unlike Melissen’s proofs, however, Joos’s proof for the optimal arrangement of thirteen points in an equilateral triangle requires continuous functions and calculus. I propose that it is possible to continue Melissen’s line of reasoning, and complete an entirely discrete proof of Joos’s Theorem for the optimal arrangement of thirteen points in an equilateral triangle. In this paper, we make progress towards such a proof. We prove discretely that if either of two points is fixed, Joos’s Theorem optimally places the remaining twelve. KEYWORDS: optimization; packing; equilateral triangle; distance; circles; points; thirteen; maximize
关于在等边三角形中填充13个点
奥勒在20世纪60年代开始讨论如何在等边三角形中最大化点之间的最小距离,或者等效地,将全等圆组合在一起。在1993年的一篇论文中,Melissen仅使用分区和Dirichlet鸽子洞原理的直接应用,就证明了等边三角形中4到12个点的最佳位置。在同一篇论文中,他提出了他对等边三角形中13、14、17和19个点的猜想最优排列。1997年,帕扬证明了梅利森关于十四点排列的猜想;2020年9月,Joos证明了Melissen关于十三点最优排列的猜想。这些证明完成了等边三角形中多达15个点(包括15个点)的最优排列。然而,与Melissen的证明不同,Joos关于等边三角形中十三个点的最优排列的证明需要连续函数和微积分。我提出,可以继续Melissen的推理路线,并完成Joos定理的一个完全离散的证明,证明等边三角形中十三个点的最优排列。在本文中,我们朝着这样一个证明取得了进展。我们离散地证明,如果两个点中的任何一个是固定的,Joos定理最优地放置剩余的十二个。关键词:优化;包装等边三角形;距离圆圈;点;十三最大化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信