Significance estimation for the Kullback-Leibler divergence: the Poissonian case in seismological studies

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
F. A. Nava Pichardo
{"title":"Significance estimation for the Kullback-Leibler divergence: the Poissonian case in seismological studies","authors":"F. A. Nava Pichardo","doi":"10.22201/igeof.2954436xe.2023.62.3.1578","DOIUrl":null,"url":null,"abstract":"The Kullback-Leibler divergence, κ, is a widely used measure of the difference between an observed probability distribution and a reference one; κ=0 when the two distributions are equal, but it has no upper limit to help interpret the significance of any other κ value. Using as an example the problem of distinguishing clustering or gaps in the time occurrence of earthquakes from seismicity uniformly distributed in time, a Monte Carlo method for evaluating the significance of a particular κ value is presented, a method that takes into account the number of classes in the distributions and the length of the sample. Application of this method yields a probability according to which the hypothesis of the observed distribution being a realization of the reference one can be discarded or accepted with a quantitative degree of confidence. This method, and two possible reference values, are presented using the Poisson distribution as an example, but they can be used for other reference distributions.","PeriodicalId":12624,"journal":{"name":"Geofisica Internacional","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofisica Internacional","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.22201/igeof.2954436xe.2023.62.3.1578","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Kullback-Leibler divergence, κ, is a widely used measure of the difference between an observed probability distribution and a reference one; κ=0 when the two distributions are equal, but it has no upper limit to help interpret the significance of any other κ value. Using as an example the problem of distinguishing clustering or gaps in the time occurrence of earthquakes from seismicity uniformly distributed in time, a Monte Carlo method for evaluating the significance of a particular κ value is presented, a method that takes into account the number of classes in the distributions and the length of the sample. Application of this method yields a probability according to which the hypothesis of the observed distribution being a realization of the reference one can be discarded or accepted with a quantitative degree of confidence. This method, and two possible reference values, are presented using the Poisson distribution as an example, but they can be used for other reference distributions.
Kullback-Leibler散度的显著性估计:地震学研究中的泊松案例
Kullback-Leibler散度κ是一种广泛使用的测量观测概率分布与参考概率分布之间差异的方法;当两个分布相等时,κ=0,但它没有上限,以帮助解释任何其他κ值的显著性。以在时间上均匀分布的地震活动中区分地震发生时间的聚类或间隙问题为例,提出了一种评估特定κ值显著性的蒙特卡罗方法,该方法考虑了分布中的类数和样本长度。这种方法的应用产生了一个概率,根据这个概率,观察到的分布的假设是参考分布的实现,可以被丢弃或以定量的置信度接受。该方法和两个可能的参考值,以泊松分布为例,但它们可以用于其他参考分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geofisica Internacional
Geofisica Internacional 地学-地球化学与地球物理
CiteScore
1.00
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Geofísica internacional is a quarterly scientific journal that publishes original papers that contain topics that are interesting for the geophysical community. The journal publishes research and review articles, brief notes and reviews books about seismology, volcanology, spacial sciences, hydrology and exploration, paleomagnetism and tectonic, and physical oceanography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信