Solutions structures for some systems of fractional difference equations

M. Almatrafi
{"title":"Solutions structures for some systems of fractional difference equations","authors":"M. Almatrafi","doi":"10.30538/PSRP-OMA2019.0032","DOIUrl":null,"url":null,"abstract":"It is a well-known fact that the majority of rational difference equations cannot be solved theoretically. As a result, some scientific experts use manual iterations to obtain the exact solutions of some of these equations. In this paper, we obtain the fractional solutions of the following systems of difference equations: xn+1 = xn−1yn−3 yn−1 (−1− xn−1yn−3) , yn+1 = yn−1xn−3 xn−1 (±1± yn−1xn−3) , n = 0, 1, ..., where the initial data x−3, x−2, x−1, x0, y−3, y−2, y−1 and y0 are arbitrary non-zero real numbers. All solutions will be depicted under specific initial conditions.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-OMA2019.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

It is a well-known fact that the majority of rational difference equations cannot be solved theoretically. As a result, some scientific experts use manual iterations to obtain the exact solutions of some of these equations. In this paper, we obtain the fractional solutions of the following systems of difference equations: xn+1 = xn−1yn−3 yn−1 (−1− xn−1yn−3) , yn+1 = yn−1xn−3 xn−1 (±1± yn−1xn−3) , n = 0, 1, ..., where the initial data x−3, x−2, x−1, x0, y−3, y−2, y−1 and y0 are arbitrary non-zero real numbers. All solutions will be depicted under specific initial conditions.
一类分数阶差分方程组的解结构
众所周知,大多数有理差分方程都无法从理论上求解。因此,一些科学专家使用手动迭代来获得其中一些方程的精确解。在本文中,我们得到了以下差分方程组的分式解:xn+1=xn−1yn−3 yn−1(−1−xn−1 yn−3),yn+1=yn−1xn−3 xn−3(±1±yn−1xn-3),n=0,1。。。,其中初始数据x−3、x−2、x−1、x0、y−3、y−2、y−1和y0是任意非零实数。所有解决方案将在特定的初始条件下进行描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信