Steiner Formula and Gaussian Curvature in the Heisenberg Group

IF 0.2 Q4 MATHEMATICS
E. Vecchi
{"title":"Steiner Formula and Gaussian Curvature in the Heisenberg Group","authors":"E. Vecchi","doi":"10.6092/ISSN.2240-2829/6693","DOIUrl":null,"url":null,"abstract":"The classical Steiner formula expresses the volume of the ∈-neighborhood Ω ∈ of a bounded and regular domain  Ω⊂R n as a polynomial of degree n in ∈. In particular, the coefficients of this polynomial are the integrals of functions of the curvatures of the boundary ∂Ω. The aim of this note is to present the Heisenberg counterpart of this result. The original motivation for studying this kind of extension is to try to identify a suitable candidate for the notion of horizontal Gaussian curvature. The results presented in this note are contained in the paper [4] written in collaboration with Zoltan Balogh, Fausto Ferrari, Bruno Franchi and Kevin Wildrick","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"7 1","pages":"97-115"},"PeriodicalIF":0.2000,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/6693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The classical Steiner formula expresses the volume of the ∈-neighborhood Ω ∈ of a bounded and regular domain  Ω⊂R n as a polynomial of degree n in ∈. In particular, the coefficients of this polynomial are the integrals of functions of the curvatures of the boundary ∂Ω. The aim of this note is to present the Heisenberg counterpart of this result. The original motivation for studying this kind of extension is to try to identify a suitable candidate for the notion of horizontal Gaussian curvature. The results presented in this note are contained in the paper [4] written in collaboration with Zoltan Balogh, Fausto Ferrari, Bruno Franchi and Kevin Wildrick
斯坦纳公式与海森堡群中的高斯曲率
经典Steiner公式将有界正则域Ω⊂Rn的∈-邻域Ω∈的体积表示为∈中的n次多项式。特别地,这个多项式的系数是边界的曲率函数的积分?Ω。本注释的目的是呈现海森堡对这一结果的对应。研究这种扩展的最初动机是试图为水平高斯曲率的概念找到一个合适的候选者。本注释中给出的结果包含在与Zoltan Balogh、Fausto Ferrari、Bruno Franchi和Kevin Wildrick合作撰写的论文[4]中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信