{"title":"Advanced refinements of Berezin number inequalities","authors":"M. Gürdal, Hamdullah Basaran","doi":"10.31801/cfsuasmas.1160606","DOIUrl":null,"url":null,"abstract":"For a bounded linear operator $A$ on a functional Hilbert space $\\mathcal{H}\\left( \\Omega\\right) $, with normalized reproducing kernel $\\widehat {k}_{\\eta}:=\\frac{k_{\\eta}}{\\left\\Vert k_{\\eta}\\right\\Vert _{\\mathcal{H}}},$ the Berezin symbol and Berezin number are defined respectively by\n$\\widetilde{A}\\left( \\eta\\right) :=\\left\\langle A\\widehat{k}_{\\eta},\\widehat{k}_{\\eta}\\right\\rangle _{\\mathcal{H}}$ and $\\mathrm{ber}(A):=\\sup_{\\eta\\in\\Omega}\\left\\vert \\widetilde{A}{(\\eta)}\\right\\vert .$ A simple comparison of these properties produces the inequality $\\mathrm{ber}%\n\\left( A\\right) \\leq\\frac{1}{2}\\left( \\left\\Vert A\\right\\Vert_{\\mathrm{ber}}+\\left\\Vert A^{2}\\right\\Vert _{\\mathrm{ber}}^{1/2}\\right) $\n(see [17]). In this paper, we prove further inequalities relating them, and also establish some inequalities for the Berezin number of operators on functional Hilbert spaces","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1160606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
For a bounded linear operator $A$ on a functional Hilbert space $\mathcal{H}\left( \Omega\right) $, with normalized reproducing kernel $\widehat {k}_{\eta}:=\frac{k_{\eta}}{\left\Vert k_{\eta}\right\Vert _{\mathcal{H}}},$ the Berezin symbol and Berezin number are defined respectively by
$\widetilde{A}\left( \eta\right) :=\left\langle A\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle _{\mathcal{H}}$ and $\mathrm{ber}(A):=\sup_{\eta\in\Omega}\left\vert \widetilde{A}{(\eta)}\right\vert .$ A simple comparison of these properties produces the inequality $\mathrm{ber}%
\left( A\right) \leq\frac{1}{2}\left( \left\Vert A\right\Vert_{\mathrm{ber}}+\left\Vert A^{2}\right\Vert _{\mathrm{ber}}^{1/2}\right) $
(see [17]). In this paper, we prove further inequalities relating them, and also establish some inequalities for the Berezin number of operators on functional Hilbert spaces