Advanced refinements of Berezin number inequalities

IF 0.7 Q2 MATHEMATICS
M. Gürdal, Hamdullah Basaran
{"title":"Advanced refinements of Berezin number inequalities","authors":"M. Gürdal, Hamdullah Basaran","doi":"10.31801/cfsuasmas.1160606","DOIUrl":null,"url":null,"abstract":"For a bounded linear operator $A$ on a functional Hilbert space $\\mathcal{H}\\left( \\Omega\\right) $, with normalized reproducing kernel $\\widehat {k}_{\\eta}:=\\frac{k_{\\eta}}{\\left\\Vert k_{\\eta}\\right\\Vert _{\\mathcal{H}}},$ the Berezin symbol and Berezin number are defined respectively by\n$\\widetilde{A}\\left( \\eta\\right) :=\\left\\langle A\\widehat{k}_{\\eta},\\widehat{k}_{\\eta}\\right\\rangle _{\\mathcal{H}}$ and $\\mathrm{ber}(A):=\\sup_{\\eta\\in\\Omega}\\left\\vert \\widetilde{A}{(\\eta)}\\right\\vert .$ A simple comparison of these properties produces the inequality $\\mathrm{ber}%\n\\left( A\\right) \\leq\\frac{1}{2}\\left( \\left\\Vert A\\right\\Vert_{\\mathrm{ber}}+\\left\\Vert A^{2}\\right\\Vert _{\\mathrm{ber}}^{1/2}\\right) $\n(see [17]). In this paper, we prove further inequalities relating them, and also establish some inequalities for the Berezin number of operators on functional Hilbert spaces","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1160606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For a bounded linear operator $A$ on a functional Hilbert space $\mathcal{H}\left( \Omega\right) $, with normalized reproducing kernel $\widehat {k}_{\eta}:=\frac{k_{\eta}}{\left\Vert k_{\eta}\right\Vert _{\mathcal{H}}},$ the Berezin symbol and Berezin number are defined respectively by $\widetilde{A}\left( \eta\right) :=\left\langle A\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle _{\mathcal{H}}$ and $\mathrm{ber}(A):=\sup_{\eta\in\Omega}\left\vert \widetilde{A}{(\eta)}\right\vert .$ A simple comparison of these properties produces the inequality $\mathrm{ber}% \left( A\right) \leq\frac{1}{2}\left( \left\Vert A\right\Vert_{\mathrm{ber}}+\left\Vert A^{2}\right\Vert _{\mathrm{ber}}^{1/2}\right) $ (see [17]). In this paper, we prove further inequalities relating them, and also establish some inequalities for the Berezin number of operators on functional Hilbert spaces
Berezin数不等式的改进
对于泛函希尔伯特空间$\mathcal{H}\left(\Omega\right) $上的有界线性算子$ a $,对于归一化的复制内核$\widehat {k}_{\eta}:=\frac{k_{\eta}}{\左\Vert k_{\eta}\右\Vert {\mathcal{H}}}, Berezin符号和Berezin数分别定义为$\ widetide {A}\左\langle A\widehat{k} {\eta}} $和$\mathrm{ber}(A):=\sup_{\eta\in\Omega}\左\Vert \ widetide {A}{(\eta)}\右\Vert。对这些性质进行简单的比较,可以得出$\mathrm{ber}%\left(A\right)\ leq \压裂{1}{2}\左左(\ \绿色一个\ \ Vert_ {\ mathrm{1}} + \ \绿色了^{2}\右\绿色_ {\ mathrm{1}} ^{5} \右)美元(见[17])。本文进一步证明了与它们相关的不等式,并建立了泛函Hilbert空间上算子的Berezin数的一些不等式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信