E. Afrianti, D. Tahir, B. Y. E. B. Jumpeno, O. A. Firmansyah, J. Mellawati
{"title":"Addition of Lead (Pb)-Nitrate Filler on Polymer Composite Aprons for X-Ray Radiation Shielding","authors":"E. Afrianti, D. Tahir, B. Y. E. B. Jumpeno, O. A. Firmansyah, J. Mellawati","doi":"10.17146/aij.2021.1033","DOIUrl":null,"url":null,"abstract":"Radiation shield ing aprons are needed by radiation workers to minimize radiation exposure to the body. The apron s at present use fabric-coated lead plates which are heavy and rigid materials and therefore are not comfortable to use. Polymer aprons from cassava starch and glycerin with addition of Pb- nitrate filler at 0 %, 2 %, 4 %, and 6 % have been synthesized. Mixtures for synthesizing the polymer apron composites were heated using a magnetic stirrer at a speed of 800 rpm at 160 °C for 25 minutes. Then, the polymer apron composites were dried in an oven for 24 hours at 70 °C. The effectiveness of the apron was determined by calculating the attenuation coefficient ( μ ), half-value layer (HVL), and radiation absorption. The mechanical properties of the aprons were characterized by testing their tensile strengths using an A&D MCT-2150 universal tester. The result shows that the optimal addition of Pb- nitrate filler of as much as 6 % produced aprons with an attenuation coefficient of 1248 cm ‑1 , HVL of 0.54 cm, and radiation absorption of 25 % , while the aprons’ tensile strength was obtained as 28.244 MPa. T he addition of Pb-nitrate as a filler in apron composites proportionally improves the quality of materials used as radiation shields. More detailed research is still needed to obtain the best apron. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ \n table.MsoNormalTable \n {mso-style-name:\"Table Normal\"; \n mso-tstyle-rowband-size:0; \n mso-tstyle-colband-size:0; \n mso-style-noshow:yes; \n mso-style-priority:99; \n mso-style-parent:\"\"; \n mso-padding-alt:0cm 5.4pt 0cm 5.4pt; \n mso-para-margin-top:0cm; \n mso-para-margin-right:0cm; \n mso-para-margin-bottom:10.0pt; \n mso-para-margin-left:0cm; \n line-height:115%; \n mso-pagination:widow-orphan; \n font-size:11.0pt; \n font-family:\"Calibri\",\"sans-serif\"; \n mso-ascii-font-family:Calibri; \n mso-ascii-theme-font:minor-latin; \n mso-hansi-font-family:Calibri; \n mso-hansi-theme-font:minor-latin; \n mso-bidi-font-family:\"Times New Roman\"; \n mso-bidi-theme-font:minor-bidi;}","PeriodicalId":8647,"journal":{"name":"Atom Indonesia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atom Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17146/aij.2021.1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Radiation shield ing aprons are needed by radiation workers to minimize radiation exposure to the body. The apron s at present use fabric-coated lead plates which are heavy and rigid materials and therefore are not comfortable to use. Polymer aprons from cassava starch and glycerin with addition of Pb- nitrate filler at 0 %, 2 %, 4 %, and 6 % have been synthesized. Mixtures for synthesizing the polymer apron composites were heated using a magnetic stirrer at a speed of 800 rpm at 160 °C for 25 minutes. Then, the polymer apron composites were dried in an oven for 24 hours at 70 °C. The effectiveness of the apron was determined by calculating the attenuation coefficient ( μ ), half-value layer (HVL), and radiation absorption. The mechanical properties of the aprons were characterized by testing their tensile strengths using an A&D MCT-2150 universal tester. The result shows that the optimal addition of Pb- nitrate filler of as much as 6 % produced aprons with an attenuation coefficient of 1248 cm ‑1 , HVL of 0.54 cm, and radiation absorption of 25 % , while the aprons’ tensile strength was obtained as 28.244 MPa. T he addition of Pb-nitrate as a filler in apron composites proportionally improves the quality of materials used as radiation shields. More detailed research is still needed to obtain the best apron. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:10.0pt;
mso-para-margin-left:0cm;
line-height:115%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;}
期刊介绍:
The focus of Atom Indonesia is research and development in nuclear science and technology. The scope of this journal covers experimental and analytical research in nuclear science and technology. The topics include nuclear physics, reactor physics, radioactive waste, fuel element, radioisotopes, radiopharmacy, radiation, and neutron scattering, as well as their utilization in agriculture, industry, health, environment, energy, material science and technology, and related fields.