Some subgroups of $mathbb{F}_q^*$ and explicit factors of $x^{2^nd}-1 in mathbb{F}_q[x]$

IF 0.6 Q3 MATHEMATICS
Manjit Singh
{"title":"Some subgroups of $mathbb{F}_q^*$ and explicit factors of $x^{2^nd}-1 in mathbb{F}_q[x]$","authors":"Manjit Singh","doi":"10.22108/TOC.2019.114742.1612","DOIUrl":null,"url":null,"abstract":"Let $mathcal{S}_q$ denote the group of all square elements in the multiplicative group $mathbb{F}_q^*$ of a finite field $mathbb{F}_q$ of odd characteristic containing $q$ elements‎. ‎Let $mathcal{O}_q$ be the set of all odd order elements of $mathbb{F}_q^*$‎. ‎Then $mathcal{O}_q$ turns up as a subgroup of $mathcal{S}_q$‎. ‎In this paper‎, ‎we show that $mathcal{O}_q=langle4rangle$ if $q=2t+1$ and‎, ‎$mathcal{O}_q=langle trangle $ if $q=4t+1$‎, ‎where $q$ and $t$ are odd primes‎. ‎Further‎, ‎we determine the coefficients of irreducible factors of $x^{2^nt}-1$ using generators of these special subgroups of $mathbb{F}_q^*$","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"23-33"},"PeriodicalIF":0.6000,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.114742.1612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $mathcal{S}_q$ denote the group of all square elements in the multiplicative group $mathbb{F}_q^*$ of a finite field $mathbb{F}_q$ of odd characteristic containing $q$ elements‎. ‎Let $mathcal{O}_q$ be the set of all odd order elements of $mathbb{F}_q^*$‎. ‎Then $mathcal{O}_q$ turns up as a subgroup of $mathcal{S}_q$‎. ‎In this paper‎, ‎we show that $mathcal{O}_q=langle4rangle$ if $q=2t+1$ and‎, ‎$mathcal{O}_q=langle trangle $ if $q=4t+1$‎, ‎where $q$ and $t$ are odd primes‎. ‎Further‎, ‎we determine the coefficients of irreducible factors of $x^{2^nt}-1$ using generators of these special subgroups of $mathbb{F}_q^*$
$mathbb的一些子群{F}_q^*$和mathbb中$x^{2^nd}-1的显式因子{F}_q[x]$
让$mathcal{S}_q$表示乘法群$mathbb中所有平方元素的群{F}_q^*有限域$mathbb的${F}_q包含$q$元素的奇特征的$‎. ‎让$mathcal{O}_q$是$mathbb的所有奇数阶元素的集合{F}_q^*$‎. ‎然后$mathcal{O}_q$作为$mathcal的子群出现{S}_q$‎. ‎在本文中‎, ‎我们展示$mathcal{O}_q=langle4rangle$如果$q=2t+1$并且‎, ‎$数学的{O}_q=langle trangle$如果$q=4t+1$‎, ‎其中$q$和$t$是奇数素数‎. ‎进一步的‎, ‎我们使用$mathbb的这些特殊子群的生成元来确定$x^{2^nt}-1$的不可约因子的系数{F}_q^*$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信