{"title":"Some subgroups of $mathbb{F}_q^*$ and explicit factors of $x^{2^nd}-1 in mathbb{F}_q[x]$","authors":"Manjit Singh","doi":"10.22108/TOC.2019.114742.1612","DOIUrl":null,"url":null,"abstract":"Let $mathcal{S}_q$ denote the group of all square elements in the multiplicative group $mathbb{F}_q^*$ of a finite field $mathbb{F}_q$ of odd characteristic containing $q$ elements. Let $mathcal{O}_q$ be the set of all odd order elements of $mathbb{F}_q^*$. Then $mathcal{O}_q$ turns up as a subgroup of $mathcal{S}_q$. In this paper, we show that $mathcal{O}_q=langle4rangle$ if $q=2t+1$ and, $mathcal{O}_q=langle trangle $ if $q=4t+1$, where $q$ and $t$ are odd primes. Further, we determine the coefficients of irreducible factors of $x^{2^nt}-1$ using generators of these special subgroups of $mathbb{F}_q^*$","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"23-33"},"PeriodicalIF":0.6000,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.114742.1612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $mathcal{S}_q$ denote the group of all square elements in the multiplicative group $mathbb{F}_q^*$ of a finite field $mathbb{F}_q$ of odd characteristic containing $q$ elements. Let $mathcal{O}_q$ be the set of all odd order elements of $mathbb{F}_q^*$. Then $mathcal{O}_q$ turns up as a subgroup of $mathcal{S}_q$. In this paper, we show that $mathcal{O}_q=langle4rangle$ if $q=2t+1$ and, $mathcal{O}_q=langle trangle $ if $q=4t+1$, where $q$ and $t$ are odd primes. Further, we determine the coefficients of irreducible factors of $x^{2^nt}-1$ using generators of these special subgroups of $mathbb{F}_q^*$